5 research outputs found

    Text image secret sharing with hiding based on color feature

    Get PDF
    The Secret Sharing is a scheme for sharing data into n pieces using (k, n) threshold method. Secret Sharing becomes an efficient method to ensure secure data transmission. Some visual cryptography techniques don’t guarantee security transmission because the secret information can be retrieved if the hackers obtain the number of shares. This study present a secret sharing method with hiding based on YCbCr color space. The proposed method is based on hiding the secret text file or image into a number of the cover image. The proposed method passes through three main steps: the first is to convert the secret text file or image and all cover images from RGB to YCbCr, the second step is to convert each color band to binary vector, then divide this band in the secret image into four-part, each part is appended with a binary vector of each cover image in variable locations, the third step is converting the color space from YCbCr to RGB color space and the generated shares, hidden with covers, are ready for transmission over the network. Even if the hackers get a piece of data or even all, they cannot retrieve the whole picture because they do not know where to hide the information. The results of the proposed scheme guarantee sending and receiving data of any length. The proposed method provides more security and reliability when compared with others. It hides an image of size (234x192) pixels with four covers. The MSE result is 3.12 and PSNR is 43.74. The proposed method shows good results, where the correlation between secret and retrieved images is strong ranging from (0.96 to 0.99). In the proposed method the reconstructed image quality is good, where original and reconstructed images Entropy are 7.224, 7.374 respectively

    Reversible Data Hiding in Encrypted Images Using MSBs Integration and Histogram Modification

    Full text link
    This paper presents a reversible data hiding in encrypted image that employs based notions of the RDH in plain-image schemes including histogram modification and prediction-error computation. In the proposed method, original image may be encrypted by desire encryption algorithm. Most significant bit (MSB) of encrypted pixels are integrated to vacate room for embedding data bits. Integrated ones will be more resistant against failure of reconstruction if they are modified for embedding data bits. At the recipient, we employ chess-board predictor for lossless reconstruction of the original image by the aim of prediction-error analysis. Comparing to existent RDHEI algorithms, not only we propose a separable method to extract data bits, but also content-owner may attain a perfect reconstruction of the original image without having data hider key. Experimental results confirm that the proposed algorithm outperforms state of the art ones
    corecore