5 research outputs found

    Shape Similarity Measurement for Known-Object Localization: A New Normalized Assessment

    Get PDF
    International audienceThis paper presents a new, normalized measure for assessing a contour-based object pose. Regarding binary images, the algorithm enables supervised assessment of known-object recognition and localization. A performance measure is computed to quantify differences between a reference edge map and a candidate image. Normalization is appropriate for interpreting the result of the pose assessment. Furthermore, the new measure is well motivated by highlighting the limitations of existing metrics to the main shape variations (translation, rotation, and scaling), by showing how the proposed measure is more robust to them. Indeed, this measure can determine to what extent an object shape differs from a desired position. In comparison with 6 other approaches, experiments performed on real images at different sizes/scales demonstrate the suitability of the new method for object-pose or shape-matching estimation

    Using Fuzzy Inference system for detection the edges of Musculoskeletal Ultrasound Images

    Get PDF
    Edge detection in Musculoskeletal Ultrasound Imaging readily allows an ultrasound image to be rendered as a binary image. This facilitates automated measurement of geometric parameters, such as muscle thickness, circumference and cross-sectional area of the tendon. In this work, we introduced a new method of edge detection based on a fuzzy inference system and apply it to the ultrasound image. An anisotropic diffusion filter was used to reduce speckle noise before implementation of the edge detection method, which consists of three characteristic steps. The first step entailed fuzzification, for which three fuzzy membership functions were applied to the image. The parameters of these functions were selected based on an analysis of the standard deviation of grey level intensities in the image. Secondly, 12 fuzzy rules for identifying edges were constructed. Thirdly, defuzzification was carried out using the Takagi-Sugeno method. Furthermore, a reference-based edge measurement was quantitatively determined by comparing edge characteristics with a standard reference. We made two inferences from our observations. Firstly, the ability to automatically identify the important details of a musculoskeletal ultrasound image in a very short time is possible. Secondly, this method is effective compared with other methods

    Automated analysis of ultrasound imaging of muscle and tendon in the upper limb using artificial intelligence methods

    Get PDF
    Accurate estimation of geometric musculoskeletal parameters from medical imaging has a number of applications in healthcare analysis and modelling. In vivo measurement of key morphological parameters of an individual’s upper limb opens up a new era for the construction of subject-specific models of the shoulder and arm. These models could be used to aid diagnosis of musculoskeletal problems, predict the effects of interventions and assist in the design and development of medical devices. However, these parameters are difficult to evaluate in vivo due to the complicated and inaccessible nature of structures such as muscles and tendons. Ultrasound, as a non-invasive and low-cost imaging technique, has been used in the manual evaluation of parameters such as muscle fibre length, cross sectional area and tendon length. However, the evaluation of ultrasound images depends heavily on the expertise of the operator and is time-consuming. Basing parameter estimation on the properties of the image itself and reducing the reliance on the skill of the operator would allow for automation of the process, speeding up parameter estimation and reducing bias in the final outcome. Key barriers to automation are the presence of speckle noise in the images and low image contrast. This hinders the effectiveness of traditional edge detection and segmentation methods necessary for parameter estimation. Therefore, addressing these limitations is considered pivotal to progress in this area.The aims of this thesis were therefore to develop new methods for the automatic evaluation of these geometric parameters of the upper extremity, and to compare these with manual evaluations. This was done by addressing all stages of the image processing pipeline, and introducing new methods based on artificial intelligence.Speckle noise of musculoskeletal ultrasound images was reduced by successfully applying local adaptive median filtering and anisotropic diffusion filtering. Furthermore, low contrast of the ultrasound image and video was enhanced by developing a new method based on local fuzzy contrast enhancement. Both steps contributed to improving the quality of musculoskeletal ultrasound images to improve the effectiveness of edge detection methods.Subsequently, a new edge detection method based on the fuzzy inference system was developed to outline the necessary details of the musculoskeletal ultrasound images after image enhancement. This step allowed automated segmentation to be used to estimate the morphological parameters of muscles and tendons in the upper extremity.Finally, the automatically estimated geometric parameters, including the thickness and pennation angle of triceps muscle and the cross-sectional area and circumference of the flexor pollicis longus tendon were compared with manually taken measurements from the same ultrasound images.The results show successful performance of the novel methods in the sample population for the muscles and tendons chosen. A larger dataset would help to make the developed methods more robust and more widely applicable.Future work should concentrate on using the developed methods of this thesis to evaluate other geometric parameters of the upper and lower extremities such as automatic evaluation of the muscle fascicle length
    corecore