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Abstract: This paper presents a new, normalized measure for assessing a contour-based object pose.
Regarding binary images, the algorithm enables supervised assessment of known-object recognition
and localization. A performance measure is computed to quantify differences between a reference
edge map and a candidate image. Normalization is appropriate for interpreting the result of the
pose assessment. Furthermore, the new measure is well motivated by highlighting the limitations of
existing metrics to the main shape variations (translation, rotation, and scaling), by showing how the
proposed measure is more robust to them. Indeed, this measure can determine to what extent an
object shape differs from a desired position. In comparison with 6 other approaches, experiments
performed on real images at different sizes/scales demonstrate the suitability of the new method for
object-pose or shape-matching estimation.

Keywords: distance measures; contours; shape; pose evaluation

1. Introduction and Motivations

Representing an object shape is extremely useful for specific industrial and medical inspection
tasks. When a shape is aligned, under supervision, with a reference model, a wide variety of
manipulations can arise/be used. Contrary to region-based methods [1], edge-based representation
remains a set of methods only exploiting information about shape boundaries. The assessment of
acquired features (contours) in a candidate image compared to an ideal contour map model is therefore
one approach to the supervised assessment of shape depiction. This paper presents a new approach
for the measurement of a contour-based object pose, which is normalized. It follows on from a talk
given by the research team in [2], dealing with the subject more thoroughly and in greater detail.
The proposed measurement evaluates an estimated supervised score for the shape representation
based on the weights created by both false positive and false negative edge pixels. In this context,
normalization is highly appropriate for interpreting an algorithm result. Normalization is a technical
operator that can determine when a score is suitable in function of the intended operation: if the
score is near 1, the action is deemed to be good, whereas a score close to 0 indicates an inappropriate
initiative. There exist several techniques to assess a binary shape; usually, they are used in the edge
detection evaluation framework. However, the existing normalized methods suffer from various
drawbacks: either they consider spurious points (false positives) or they record only missing ones
(false negative) and their associated distances. The new method applies various strategies to normalize
and reliably assess the contour-based localization of objects. First, misplaced pixels are penalized as a
function of their distances from where they should be localized. Secondly, the normalization term is
pondered using the number of false positive and false negative points.

The next section is devoted to existing shape-based normalized measures. This demonstrates the
advantage of considering distance pixels instead of counting only false positives and false negatives.
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Moreover, in this current section, the drawbacks of the different measures are shown and detailed,
further supporting the choice of the new normalized measure.

The last part of this paper is dedicated to experimental evaluations and results. Experiments are
performed on synthetic and real images, where the desired shapes suffer from rotation, translation,
or scale changes. The normalization is valuable and robust, it obtains a similar movement evaluation
even when a scale change appears. Eventually, as opposed to the 6 other compared normalized
measures, the new method calculates a coherence score to qualify the possibility of correct object pose.

2. On Existing Normalized Measures

In reality, there are several alterations that can interfere with and disturb the object-pose estimation,
including occlusion, translation, rotation or a change in the scale of the object. Consequently, both their
own shape(s) and their contours may be changed. As an example, Figure 1 illustrates an object shape
undergoing translation; due to discretization of the edges, shapes are not exactly similar. The purpose
of this study is to determine when the object is moving to the desired position, or rather the opposite,
moving away. To that end, six normalized supervised contour measures are presented below. Then,
an evaluation process is performed to determine the degree to which an object shape differs from a
desired position in function of various alterations. Various evaluation methods have been proposed in
the literature to assess different shapes of edges using pixel-based ground truths (see reviews in [3–7]).
Indeed, a supervised evaluation criterion calculates a measure of the dissimilarity between a ground
truth (Gt) and a detected contour map (Dc) of an original image I, as in Figures 1 and 2. In this paper,
the closer the evaluation score is to 1, the more the object localization is qualified as appropriate,
as represented in Figure 3. A score close to 0 indicates poor object positioning. The confusion matrix
remains a cornerstone in evaluation methods for assessing a known shape. Comparing pixel by
pixel Gt and Dc, the first criterion assessed is the common presence of edge or non-edge points.
A basic statistical evaluation is performed by combining Gt and Dc. Subsequently, denoting | · | as the
cardinality of a set (e.g., |Gt| denotes the number of edge pixels in Gt), all points are categorized into
four sets, as illustrated in Figure 1:

• True Positive points (TPs): TP = |Gt ∩ Dc|,
• False Positive points (FPs): FP = |¬Gt ∩ Dc|,
• False Negative points (FNs): FN = |Gt ∩ ¬Dc|,
• True Negative points (TNs): TN = |¬Gt ∩ ¬Dc|.

  

  

TP pixel

FP pixel

FN pixel

TN pixel

(a) Gt, 36×47 (b) Dc, 36×47 (c) Gt vs. Dc (d) Legend

Figure 1. Example a ground truth Gt and a desired contour Dc. For each FN point, the minimum
distance between the considered FN and Dc is recorded, called dDc (FN). For each FP point,
the minimum distance between the considered FP and Gt is recorded, called dGt (FP). Please note that
for a TP pixel, both dDc (TP) = 0 and dGt (TP) = 0.

Various edge detection evaluation methods have been developed that make use of confusion
matrices , cf. [5–7]. The Dice measure [8,9] is one well known example:

Dice(Gt, Dc) =
2 · TP

2 · TP + FN + FP
.
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This type of assessment is well suited to region segmentation evaluation [9], but one requirement
for a reference-based edge map quality measure is the penalization of a displaced edge in function
of FPs and/or FNs and also the distance from the correct position [6,7], as indicated with arrows in
Figure 1.

In this context, Table 1 lists the most relevant normalized measures involving distances. For the
pixel p in the candidate contour Dc, dGt(p) represents the minimum Euclidian distance between p
and Gt. Such distance measures are important in image matching and can be used to determine
the resemblance between two object shapes [3]. To that end, if p belongs to Gt, dDc(p) is the
minimum distance between p and Dc, Figure 1 illustrates the difference between dGt(p) and dDc(p).
Mathematically, denoting (xp, yp) and (xt, yt) the pixel coordinates of two points p and t respectively,
thus dGt(p) and dDc(p) are described by:

for p ∈ Dc : dGt(p)= Inf
{√

(xp − xt)2 + (yp − yt)2, t ∈ Gt

}
,

for p ∈ Gt : dDc(p)= Inf
{√

(xp − xt)2 + (yp − yt)2, t ∈ Dc

}
.

Table 1. List of normalized dissimilarity measures involving distances, generally: κ = 0.1 or 1/9.

Error Measure Name Formulation Parameters
Pratt’s Figure of
Merit [10] FoM (Gt, Dc) =

1
max (|Gt| , |Dc|)

· ∑
p∈Dc

1
1 + κ · d2

Gt
(p)

κ ∈ ]0; 1]

FoM revisited [11] F (Gt, Dc) =
1

|Gt |+β·FP · ∑
p∈Gt

1
1 + κ · d2

Dc
(p)

κ ∈ ]0; 1] and β a
real positive

Combination of FoM
and statistics [12] d4 (Gt, Dc) = 1− 1

2 ·
√

(TP−max (|Gt| , |Dc|))2 + FN2 + FP2

(max (|Gt| , |Dc|))2 + (1− FoM (Gt, Dc))
2 κ ∈ ]0; 1]

Edge map quality
measure [13] Dp (Gt, Dc) = 1− 1/2

|I|−|Gt | · ∑
p∈FP

(
1− 1

1 + κ·d2
Gt
(p)

)
− 1/2
|Gt|
· ∑
p∈FN

(
1− 1

1 + κ·d2
TP(p)

)
κ ∈ ]0; 1]

Edge Mismatch
Measure (EMM) [14]

EMM(Gt, Dc) =
TP

TP + ω ·
[

∑
p∈FN

δDc (p) + ε · ∑
p∈FP

δGt (p)

] Mdist, Dmax,
ω and ε are
real positive.

δDc (p) =

{
dDc (p), if dDc (p) < Mdist

Dmax, otherwise
and δGt (p) =

{
dGt (p), if dGt (p) < Mdist

Dmax, otherwise.

Mdist= |I|/40,
Dmax = |I|/10,
ω = 10/|I|, ε = 2,
see [14].

These distances are Euclidean, although certain authors include other types of distances,
see [5,15,16]. For example, the Earth Mover’s Distance (EMD) represents a method to evaluate
dissimilarity between two multi-dimensional distributions in some feature space using distance
measures between single features. A distribution can be represented by a set of pixels [17]. This distance
corresponds to the minimal cost to transform one distribution into the other. It is based on a solution
to the transportation problem from linear optimization that minimizes the overall cost over all possible
1-to-1 correspondences. However, the main disadvantage of this technique appears when the two
features contain several data that are too far away from each other, so EMD gives different weights for
the points of the two sets, this optimization problem can be solved by partial matching [17]. Finally,
EMD obtains a compactness of the matching signatures that can handle variable-size structures and
can be computed quickly [16]. On the other and, the Chamfer distance expresses the computation of an
average of the degree of matching, i.e., the average distance from each edge point to the nearest edge
point in the ground truth template [18]. The advantage of this distance is that there is no necessity to
use all the edge points of the shapes: for example, corner points or other feature points can be used.
Nevertheless, the method lacks precision when too few feature points are taken into account and is
sensitive to outliers, especially when the sample of data points is too light. For better robustness, as a
compromise, the method works best when the point set is sparse, reducing the computation required.
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In the field of shape positioning, other dissimilarity measures, based on the Hausdorff distance [3],
have been proposed, see [3,4,6,19]. Most of these measures are non-normalized. The communication [6]
proposes a normalization method for distance measures, but it is not sufficiently practical with real
images. In the evaluation of edge detection, a commonly used normalized similarity measure refers to
FoM [10]. Parameter κ acts as a scale parameter, the closer κ is to 1, the more FoM deals with FPs [6].
Nevertheless, FN distances are not recorded, and they are highly penalized as statistical measures
(detailed in [7]):

FoM (Gt, Dc) =
1

max (|Gt| , |Dc|)
·
(

TP + ∑
p∈FP

1
1 + κ · d2

Gt
(p)

)
.

Therefore, different shapes are interpreted as being the same [6] for the same number of FNs,
as in Figure 2. Furthermore, if FP = 0: FoM (Gt, Dc) = TP/|Gt|. When FN > 0 and d2

Gt
(FP)

is constant, it acts like matrix-based error assessments (detailed in [6]). Finally, for FP > 0, FoM
penalizes over-detection much less severely than under-detection [6]. Several evaluation measures
have been derived from FoM: F, d4, Dp and EMM. First, contrary to FoM, the F measure calculates FN
distances but not FP distances, so FPs are heavily penalized. However, the d4 measurement is highly
dependent on TP, FP, FN and ≈1/4 on FoM, but like the FoM measure d4 penalizes FNs by around
25%. The right-hand term of the dissimilarity measure Dp [13] calculates the distances of the FNs from
the closest correctly detected edge pixel, i.e., TPs (FNs are heavily penalized when TPs are far from
FPs, or when Gt∩Dc = ∅). In addition, Dp has higher sensitivity to FNs than FPs because of the very
high coefficient 1

|I|−|Gt | for the left-hand term (presented in detail in [7]). The Edge Mismatch Measure
(EMM), on the other hand, depends on TPs and both dDc and dGt . Thus, δDc/Gt(p) is a threshold
distance function that penalizes distances exceeding a maximum value maxdist). It should be noted
that the parameters suggested depend on |I|, the total number of pixels in I. Moreover, EMM only
calculates a score other than 0 if there is at least one TP, see example in Figure 2 with two different
shapes, but obtaining the same scores.

(a) Gt, |Gt| = 48 (b) C1, TP = 0 (c) C2, TP = 0
image 21×21 FN = 48, FP = 52 FN = 48, FP = 52

Dice(Gt, C1) = 0 Dice(Gt, C2) = 0
FoM(Gt, C1) = 0.8 FoM(Gt, C2) = 0.8
F(Gt, C1) = 0.38 F(Gt, C2) = 0.26
d4(Gt, C1) = 0.15 d4(Gt, C2) = 0.15
Dp((Gt, C1) = 0.48 Dp(Gt, C2) = 0.46
EMM(Gt, C1) = 0 EMM(Gt, C2) = 0
MµFP=0.1

µFN=0.4 (Gt, C1) = 0.81 MµFP=0.1
µFN=0.4 (Gt, C2) = 0.64

MµFP=0.1
µFN=0.2 (Gt, C1) = 0.87 MµFP=0.1

µFN=0.2 (Gt, C2) = 0.70

Figure 2. Different Dc: FPs and number of FNs are the same for C1 and for C2 (FN = 48, FP = 52),
but the distances of FNs and the shapes of the two Dc are different.

3. A New Normalized Measure

The principal motivation is that currently there is no normalized shape-based measure that takes
into account both FP and FN distances and can record a desired evolution in the localization of the
object. As explained in [20], FP and FN distance evaluations must not be symmetrical. Evidently,
a shape-based measure involving false negative distances is more accurate than other techniques.
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However, using only undersegmentation measures, where parts of the candidate image are missing
but detected near their desired positions, they are not taken into account (by F for example, see Table 1)
and the object is poorly localized. Missing edges need to be more heavily penalized than spurious
edges because isolated points can disturb the shape localization, and therefore most of the measures,
cf. experiments. To summarize, a measure needs to penalize FNs more highly than FPs, because the
more FNs there are in Dc, the more the shape of the desirable object is difficult to unrecognize and
therefore difficult to localize.

Thus, in separating penalties for FN distances and FP distances, the new normalized distance
measure is inspired by the Relative Distance Error [3,7,21,22]:

RDE (Gt, Dc) =

√
1
|Dc|

· ∑
p∈Dc

d2
Gt
(p) +

√
1
|Gt|
· ∑

p∈Gt

d2
Dc

(p).

Indeed, this edge detection evaluation measure separately computes the distances of FPs and FNs
in function of the number of points in Dc and Gt, respectively, but it is not normalized; so its scores are
interpretable with difficulty (Appendix A of this paper presents other non-normalized measures with
results regarding real videos V2, V3 and V4.). Thereafter, demonstrations and experiments in [7,20]
provide the motivations for the elaboration of a normalized shape-based location described by the
following formula, when FN > 0 or FP > 0:

M(Gt, Dc) =
1

FP + FN
·
[

FP
|Dc|

·∑
p∈Dc

1
1 + µFP · d2

Gt
(p)

+
FN
|Gt|
·∑
p∈Gt

1
1 + µFN · d2

Dc
(p)

]
, (1)

where (µFP, µFN) are real positives representing the two scale parameters and the coefficient 1
FP+ FN

normalizes theM function. If FP = FN = 0, thenM = 1. Subsequently, to become as fair as possible,
FPs and FNs distances are penalized separately according to the relationship between FPs and |Dc|
and between FNs and |Gt| respectively, ensuring an equal distribution of mistakes, without symmetry
of penalties. The two parameters µFP and µFN tune the evaluation respectively for FPs and FNs.
Indeed, when µFP < µFN ,M penalizes the FNs more, compared to the FPs, as illustrated in Figure 2.
The results presented below show the importance of the weights given for FNs because isolated FP
points may disturb the shape localization. In this context, Section 4.3 underlines that the optimum
values for the parameters (µFP, µFN) should be linked to the maximum Euclidian distance between Gt

and any pixel in the image (see ∆ parameter in Figure 4d).
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Figure 3. Expected behavior of a measure scores concerning an ideal displacement.
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M, µFP = 1/∆2, µFN = 1/∆
M, µFP = 1/D2, µFN = 1/D
M, µFP = 0.1, µFN = 0.2
FoM
F
EMM

(e) Scores of measures (f) Scores of measures (g) Scores of measures
regarding object translation regarding object rotation regarding object scale

Figure 4. Examples behaviors of localization metrics for translation, rotation, and scale alterations.
In (a–c), red points represent the shape at a particular position, whereas the green points correspond
to the true shape position (i.e., Gt). Several parameters forM are tested: ∆ represents the maximum
distance between a pixel in Dc with Gt (usually an image corner pixel), whereas D is the length of the
image diagonal. Parameters D and ∆ are calculated automatically and D > ∆.

4. Evaluation and Results

To test various parameters and check whether the proposed measure has the required properties,
several alterations are made to create synthetic localization results simulating real results. To quantify
the reliability of a measure of dissimilarity, various alterations are applied to an edge map of a synthetic
shape: rotation, translation and scale change (in Figure 4). This verifies whether the evolution of
the score obtained by a measure corresponds with the expected behavior: usually minor errors for
close shapes (scores close to 1) and heavier penalties for more different shapes (scores close to 0),
as illustrated in Figure 3. To summarize, the desired behavior of a normalized dissimilarity measure is
that its score should:

• increase towards 1 when the shape approaches its target,
• converge slowly towards 1 when the movement towards the target is slow,
• rise rapidly towards 1 when the movement towards the target is rapid,
• not be disturbed (error peaks, see results in Appendix A) by the sudden appearance of outliers or

the disappearance of some feature pixels,
• remain stable (i.e., constant) when the object is immobile, despite the undesirable contours

(outliers) detected during the video.

The next step consists of experiments carried out concerning real videos, by computing contours.

4.1. Experiments with Synthetic Shapes

A synthetic shape is created and presented in Figure 4d. This image is inverted for a better
visualization, i.e., edge points tied to the object are in black whereas background and non-shape points
are represented in white. In Figure 4a,b, red pixels correspond to the shape of the desired object of
a simulated movement and green pixels represent the object shape at the desired position (exactly
positioned as the ground truth Gt).



J. Imaging 2019, 5, 77 7 of 23

4.1.1. Translation

In the first test, the synthetic contour shape is gradually translated by moving it away from its
initial location along a horizontal straight line. Figure 4a illustrates this movement and Figure 4e
reports the values of FoM, F, EMM andM. The new algorithm is tested with different parameters
(µFP, µFN), considering 1/D or 1/∆. Thus, D is the diagonal length of the image. ∆ is the maximum
distance between a pixel in Dc with Gt (usually an image corner pixel), as illustrated in Figure 4d.
Three couples of parameters are tested : (µFP = 1/∆2, µFN = 1/∆), (µFP = 1/D2, µFN = 1/D)
and (µFP = 0.1, µFN = 0.2). They are chosen such that µFP < µFN to penalize FNs more highly
than FPs. The Dice and d4 scores are not reported because they have clear discontinuities and are
highly sensitive to small displacements (see [20]). The FoM and F measures are also highly sensitive
to small displacements, as M with µFP = 0.1 and µFN = 0.2; moreover, as with EMM, they are
non-monotonous (unlikeM with automatic parameters tied to D and ∆). This first experiment shows
the importance of parameter choice concerning (µFP, µFN); they must be far below 0.1.

4.1.2. Rotation

The second test is performed by incrementally rotating the control shape until complete 360◦

rotation, as illustrated in Figure 4b. The shape of the measure scores curve should be roughly
symmetrical at around 180◦. The FoM and F measures are highly sensitive to small rotations and
EMM does not sufficiently penalize movements, whereasM, considering ∆ or D parameters, results
in consistent scores. Indeed, the scores are between 0.3 and 0.5 because edges of Dc are always located
in the same neighborhood as edges of Gt, contrary to other measures where the scores are less than 0.2.

4.1.3. Scale Change

The last experiment on synthetic data involves scaling up the object shape with the maximum
scale 8 times the original (nevertheless, Gt and Dc keep the same size). However, the EMM curve has
sharp discontinuities showing its unstable response to scaling, because its responses depend strongly
on the number of TPs and correspond to 0 without TPs. If there is no TP, for bigger scales, EMM falls
to 0, with no evolution in the score for up-scaling. The FoM and F scores become very sensitive right
from the first change with scores close to 0.2. Finally,M with automatic parameters ∆ or D obtains
desirable scores, decreasing regularly and monotonously from 1 to 0.

4.2. Experiments on Real Images

Experiments on real color images are also carried out, see Figures 5–8 and Table 2. The Canny
edge detector (σ = 1) [23] is used to extract thin edges. Figures 5 and 6 illustrate the edge detection,
compared to the ground truth. The edge detections are shown on images at the original size 1280 ×
720, whereas the ground truths are presented in Figures 5g,h and 6g,h at different scales in the same
image. Figures 7 and 8 presents two other experiments with images at one size 1280 × 720. The aim,
by moving the camera and using thin binary edges as features, is to determine when the object is in
the desired position in the image. The scores must converge to 1. The desired position corresponds to
the object in the last video frame (usually blue edges). The ground truth corresponds to the binary
boundaries of the desired position of the known object, represented by blue pixels in Figures 5a–f,
6a–f, 7a–g and 8a,d,g. The green pixels represent TPs, red points are FPs, whereas blue pixels, which
are also Gt, are FNs. These features are dilated using a structural element of size 3 × 3 for better
visualization; after which they are finally inserted into the current frame. During the movement, each
frame may become corrupted by numerous FPs. Moreover, the candidate object may contain FNs
when the object is well positioned, as illustrated in Figure 11e,f. The images presented in Figures 5i,j,
6i,j and 7d represent the edge movements in function of time (from blue to red), illustrating the huge
number of noise pixels for certain videos. Please note that FoM, F, d4, Dp and EMM measures are
compared using default parameters (see Table 1).
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(a) First image of V1 (b) First image of V2

(c) 13th image of V1 (d) 27th image of V2

(e) Last image of V1 (f) Last image of V2

(g) Gt of V1 at different sizes (h) Gt of V2 at different sizes

(i) Edge accumulation of V1 for the original size (j) Edge accumulation of V2 for the original size

Figure 5. The first images of videos V1 and V2 with their Gt for different sizes: original size (1280× 720),
4×, 16×, 64× and 256× reduced (640 × 360, 320 × 180, 160 × 90 and 80 × 45).
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(a) First image of V3 (b) First image of V4

(c) 173th image of V3 (d) 40th image of V4

(e) Last image of V3 (f) Last image of V4

(g) Gt of V3 at different sizes (h) Gt of V4 at different sizes

(i) Edge accumulation of V3 for the original size (j) Edge accumulation of V4 for the original size

Figure 6. The first images of videos V3 and V4 with their Gt at different sizes: original size (1280× 720),
4×, 16×, 64× and 256× reduced (640 × 360, 320 × 180, 160 × 90 and 80 × 45).
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Table 2. Summary of different alterations imposed for each video. The degree of noise signifies the
number of FPs outside of the shape contour of the desired object (due to noise or a table border). The
number of “*” corresponds to the degree of noise, object translation, rotation or scale change; the more
the stars “*” are, the more the image is altered.

V1 V2 V3 V4 V5 V6

Degree of noise * ** ** *** ** -
Degree of Translation *** * ** ** *** *

Degree of Rotation - ** *** - *** -
Degree of object scale change - * ** * ** -

4.2.1. Real Video 1 (V1)

The first video, presented in Figure 5 (left), contains 27 frames. This pose evaluation
predominantly concerns translation; some undesirable FPs are also present and may disturb the
object position assessment. Object contours are easily extracted throughout the video. The scores of
the various measures are reported in Figure 9 in function of image size. The object is always visible in
the image throughout the whole video. As this experiment only relates to a regular object translation,
the score of the measures must start around 0.5, increasing regularly and monotonously up to 1 for
each scale. For large scales, Dice, FoM, F, d4 and Dp increase to 1 exclusively around the last frames.
FoM has correct behavior for the two smallest scales (160 × 90 and 80 × 45). On the contrary, EMM
scores are close to 1 from the beginning of the video. OnlyM obtains desirable behavior, increasing
regularly and monotonously up to 1, in accordance with each scale of the images.

4.2.2. Real Video 2 (V2)

Regarding the second video, V2, a rotation and a small translation are imposed on the camera,
as can be observed in Figure 5b,d,f . Figure 5j illustrates the object rotation. These movements create a
slight scale change of the object. Moreover, the table borders create FPs at several moments. The object
is moving to its desired location for the 10 first frames, then it is moving beyond the desired position,
as shown in Figure 5d. Thereafter, it moves smoothly to its desired position, with the desired shape
superposing Gt. The scores of the various measures are reported in Figure 10 in function of image size.
Most of the measures do not detect when the object moves beyond the desired position after 10 frames.
Concerning Dice, d4 and Dp, the scores converge to 1 for the last frames. FoM and F measures do not
sufficiently mark the cavity in the curve after 10 frames, except for small images. Also, the scores tied
to EMM are too close to 1, which are not exploitable. Finally, the scores of the proposed measureM
mark the cavity in the curve after 10 frames for each image scales, and then converging to 1, when the
object arrives in the desired position.

4.2.3. Real Video 3 (V3)

For the third video, V3, the object contours are extracted easily, with false positive undesirable
points created by the table edge (Figure 6a,c) and camera rotation. This camera rotation changes the
scale of the candidate shape, which may adversely affect contour-based localization. The object moves
to its desired position, up to 150 frames (creating a bump curve), then moves away and then returns
to its final position, superimposing Gt. The scores of the various measures are reported in Figure 11
in function of image size. The EMM and Dp curves are not significant because the movement is not
really perceived by the measures. In addition, the Dice, F and d4 scores only converge to 1 when the
candidate object is close to the desired location for large image scales. Only the FoM andM measures
exhibit the intended behavior for this video sequence, even if the FoM scores for small images are
globally noisy.
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4.2.4. Real Video 4 (V4)

The fourth video, V4, is severely corrupted by random noise on each color plane (SNR ≈ 11 dB).
These disturbances create spurious pixels in the edge detection process, but more particularly,
the candidate object edges are not well localized or even absent. Therefore, in Figure 12, most measures
do not evolve monotonously, but constantly for each image size, except for the end of the video, as Dice,
d4 and Dp. The scores for the F measure increase but do not converge to 1 at the end of the movement,
they increase until around 0.5, like the final scores of Dice and d4. On the contrary, Dp scores start
around 0.5 and remain constant around this value up to the last frames (except for the smallest
resolution). The FoM scores increase at the end of the video, but are stochastic for small videos, with a
gap of up to 0.4 between two frames. The EMM measure converges rapidly, but remains constant
until the end. Finally, theMmeasure increases monotonously to 1 in accordance with the different
resolutions. The gaps do not disturb the usual shape of the curves, with a score converging to 1.
A comparison with other curves regarding non-normalized measures are presented in Appendix A,
Figure A3.

4.2.5. Real Video 5 (V5)

The results given in Figures 7 and 8 are only at one scale (i.e., 720 × 1280). Video V5 contains
264 frames. The shape of the object undergoes considerable translation, rotation, and scale-change.
Figure 7d shows the various movements of the object that occur in the video. It should be noted that
the noise pixels caused by the texture of the table are also present in images Dc, which could disturb
the localization. During the video, the object moves in a series of steps (with pauses) towards its
desired position. These steps appear clearly with measureM, but less so with FoM and even less with
F. The Dice, d4 and Dp scores are somewhat constant, only changing significantly at the end of the
video. Measure EMM remains close to 1 and it can be assumed that the object in in its desired position
after about 150 frames.

4.2.6. Real Video 6 (V6)

The last video, V6, contains 74 frames. The contours of the object are well detected and there are no
noise pixels. The object is very close to its final position, so the scores of a normalized measure should
be higher than 0.5 at the start of the video. Until midway through the video, the object undergoes a
constant translation without particularly moving towards or away from its desired position. However,
after some 20 frames, the object moves away from its target before returning to the right position.
The Dice and d4 scores stay close to 0 almost throughout the video before jumping directly to 1 for
the last frame. The scores for measure Dp remain relatively constant around 0.5 before jumping to 1.
Although the appearance of the FoM and F curves show that the object moves away from its target
after 20 frames, the scores are too close to 0 at the start of the video and converge too quickly to 1 in
the final frames. TheMmeasure, on the other hand, behaves in the desired way: a score above 0.5 at
the start of the video which then decreases after about 20 frames before converging steadily to 1 after
50 frames. This result shows exactly the desired behavior of a normalized shape similarity measure.
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Figure 7. Localization metrics behaviors in a real experiment concerning video V5, 264 frames,
with images of size 720 × 1280.
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Figure 8. Cont.
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Figure 8. Localization metrics behaviors for a real experiment concerning video V6, 74 frames,
with images of size 720 × 1280.

4.3. Influence of the Parameters

The last experiments presented in Figure 13 show the importance of parameter choice, these
complete the previous experiments available in Section 4.1 and in Figure 4. To supplement the tests,
the FoM, F and d4 measures are compared using κ = 1

∆2 , which is similar toM parameters during the
previous experiments. The curves presented in Figure 13b–f illustrate that such a value is completely
inappropriate for these shape detection approaches. First, the experiment in Figure 13a concerns a
synthetic shape which is moving away from its true location. M, when, µFP = 0.1 and µFN = 0.2
decreases until 0 too rapidly whereas, using other parameters, it behaves correctly as a function of the
shape displacement. Other normalized shape dissimilarity measures with κ = 1

∆2 create important
gaps in their plotted scores. Moreover, F and d4 are not monotonous. This gap is created when the
shape is moving outside of the image; so numerous points of Dc are disappearing.

Regarding real videos, FoM scores remain close to 1 throughout the videos or converge rapidly
to 1, as for V3. Also, F decreases using this parameter for V2 et V3 (apart from the final frames),
which is in opposition to the assessment being sought here. The scores tied to F and V1 are also
constant around 0.5, whereas they are very stochastic concerning V4. On the contrary, plotted scores
tied to d4 are similar to scores in Figures 9–12 when κ =1/9. These results have a natural flow because
d4 is composed of 3/4 of statistics (number of FPs, FNs, and TPs). ConcerningM, when, µFP = 0.1
and µFN = 0.2, it behaves as FoM when κ =1/9 ( see Figures 9–12). Finally, the use of µFP = 1

∆2 and
µFN = 1

∆ parameters obtains µFP < µFN for each scale, penalizing more heavily FNs compared to FPs
in Equation (1), as demonstrated in [20]. Thus, instead of D the choice of ∆ is preferable when it comes
to certain shapes. Moreover, when µFP = 1

D2 and µFN = 1
D , scores ofM converge too rapidly to 1,

justifying the choices for its parameters.
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Figure 9. Localization metrics behaviors on real experiment concerning video 1 (V1) of 27 frames.
The parameter concerning FoM, F, d4 and Dp is κ = 1/9. ConcerningM, the parameters are µFP = 1/∆2

and µFN = 1/∆, so µFP < µFN .
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Figure 10. Localization metrics behaviors on real experiment concerning video 2 (V2) of 119 frames.
The parameter concerning FoM, F, d4 and Dp is κ = 1/9. ConcerningM, the parameters are µFP = 1/∆2

and µFN = 1/∆, so µFP < µFN .
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Figure 11. Localization metrics behaviors on real experiment concerning video 3 (V3) of 289 frames.
The parameter concerning FoM, F, d4 and Dp is κ = 1/9. ConcerningM, the parameters are µFP = 1/∆2

and µFN = 1/∆, so µFP < µFN .
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Figure 12. Localization metrics behaviors on real experiment concerning video 4 (V4) of 116 frames.
The parameter concerning FoM, F, d4 and Dp is κ = 1/9. ConcerningM, the parameters are µFP = 1/∆2

and µFN = 1/∆, so µFP < µFN .
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Figure 13. Comparison of score evolution regarding synthetic and real videos 4× reduced with
κ = 1/∆2 for FoM, F and d4 shape measures. Different parameters tied toM: µFP and µFN are also
tested.

5. Conclusions

A new approach to measuring a contour-based object pose is presented in this paper. The new
algorithm enables supervised assessment of the recognition and localization of known objects as a
function of false positive (FP) and false negative (FN) distances. The two parameters µFP and µFN tune
the evaluation respectively for FPs and FNs. When µFP < µFN , the proposed approachM penalizes
FNs more heavily than FPs. This allows the use of efficient weights for FNs because isolated FPs could
disturb the shape localization without this condition. The results of several experiments carried out
on synthetic images are presented alongside the results of the current best shape-based normalized
algorithms to show the comparative strength of the innovative method. Also, experiments on real
images showcase the pertinence of the approach for estimating object pose or shape-matching. The new
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measure is normalized, which is a major advantage for qualifying the position of an object shape.
In addition, it can be used on smaller-sized images than other measures, with a corresponding gain in
processing times. Tests on images at several scales show the reliability ofM, because the shapes of the
curves are similar, with no large gaps between each scale. Moreover, the new normalized localization
assessment does not need any tuning parameters because µFP and µFN are computed automatically
with the ground truth ( the shape of the object at the ideal positioning). Finally, this localization
measure may be useful for visual servoing processes or loss function in machine learning. Future
work will consist of a deeper investigation by evaluating the combination of reducing images and the
Chamfer distance for the shape-matching process.
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in MATLAB. The experiments were carried out by B.M. (Behrang Moradi). The figures were created by B.M.
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Appendix A

Appendix A presents additional results on real images, regarding videos 2 (V2), 3 (V3)
and 4 (V4), presented respectively in Figures 5 and 6, with images of size 720 × 1280.
The results presented here enable us to compare the behaviors of the measures presented
in this paper with those obtained using non-normalized measures. The non-normalized
measures are mathematically defined in Table A1. They have been detailed and tested in [7].
Please note that the MATLAB code of FoM, Dk, Sk and ∆k measures are available at http://
kermitimagetoolkit.net/library/code/. The MATLAB code of several other measures are available
on MathWorks: https://fr.mathworks.com/matlabcentral/fileexchange/63326-objective-supervised-
edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges. These measures can be split into
3 main categories:

• Oversegmentation measures (recording only distances of FPs): Υ, Θ, Dk and Γ.
• Undersegmentation measure (recording only distances of FNs): Ω.
• Measures recording distances of both FPs and FNs: H, f2d6, RDEk, ∆k, Ψ and λ.

Most of these measures are derived from the Hausdorff distance which is intended to estimate
the dissimilarity between each element of two binary images. The λ measure computes a weight for
FNs, and, as pointed out in [20], it behaves as expected for shape dissimilarity evaluation. By moving
the shape, the score must converge to 0, where the two contours are collocated.

The first video to be compared with the state of the art is video V2, see Figure 5. The table’s texture
and borders create FPs at several moments, especially at the end of the video. These FP pixels cause
peaks in the score curves (illustrated in Figure A1), particularly from frame 85 to the last frame, unlike
the normalized measures, whose scores are shown in Figure 10. They therefore do not determine
precisely that the object moves to its target position. Only the undersegmentation measure Ω and the
measure λ behave as desired.

http://kermitimagetoolkit.net/library/code/
http://kermitimagetoolkit.net/library/code/
https://fr.mathworks.com/matlabcentral/fileexchange/63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges
https://fr.mathworks.com/matlabcentral/fileexchange/63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges
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Table A1. List of error measures involving distances, generally: k = 1 or k = 2.

Error Measure Name Formulation Parameters

Yasnoff measure [24] Υ (Gt, Dc) =
100
|I| ·

√
∑

p∈Dc

d2
Gt
(p) None

Hausdorff distance [25] H (Gt, Dc) = max
(

max
p∈Dc

(dGt (p)), max
p∈Gt

(dDc (p))
)

None

Maximum distance [3] f2d6 (Gt, Dc) = max

(
1
|Dc|

· ∑
p∈Dc

dGt (p),
1
|Gt|
· ∑

p∈Gt

dDc (p)

)
None

Distance to Gt [3,5,26] Dk (Gt, Dc) =
1
|Dc|

· k

√
∑

p∈Dc

dk
Gt
(p), k = 1 for [3,26] k ∈ R+

Oversegmentation
measure [27] Θ (Gt, Dc) =

1
FP · ∑

p∈Dc

(
dGt (p)

δTH

)k for [27]: k ∈ R+ and
δTH ∈ R∗+

Undersegmentation
measure [27] Ω (Gt, Dc) =

1
FN · ∑

p∈Gt

(
dDc (p)

δTH

)k for [27]: k ∈ R+ and
δTH ∈ R∗+

Relative Distance
Error [3,7,21,22] RDEk (Gt, Dc) = k

√
1
|Dc|

· ∑
p∈Dc

dk
Gt
(p) + k

√
1
|Gt|
· ∑

p∈Gt

dk
Dc

(p),
k ∈ R+, k = 1 for [3],
k = 2 for [21,22]

Symmetric distance [3,5] Sk (Gt, Dc) =
k

√√√√√ ∑
p∈Dc

dk
Gt
(p)) + ∑

p∈Gt

dk
Dc

(p)

|Dc ∪ Gt|
, k = 1 for [3] k ∈ R+

Baddeley’s Delta
Metric [28] ∆k(Gt, Dc) = k

√
1
|I| · ∑

p∈I
|w(dGt (p))− w(dDc (p))|k k ∈ R+ and a convex

function w : R 7→ R

Magnier et al.
measure [29] Γ(Gt, Dc) =

FP+FN
|Gt |2 ·

√
∑

p∈Dc

d2
Gt
(p) None

Complete distance
measure [6] Ψ(Gt, Dc) =

FP+FN
|Gt |2 ·

√
∑

p∈Gt

d2
Dc
(p) + ∑

p∈Dc

d2
Gt
(p) None

λ measure [30] λ(Gt, Dc) =
FP+FN
|Gt |2 ·

√
∑

p∈Dc

d2
Gt
(p) + min

(
|Gt|2, |Gt |2

TP2

)
· ∑

p∈Gt

d2
Dc
(p) None

The scores of state-of-the-art non-normalized measures are also compared to normalized measures
using video V3. The main problem, apart from the geometric changes to the object, concern the
momentary lack of detection of the edge of the table (horizontal contour crossing the end of video V3,
see Figure 6). This contour is not extracted because it appears fuzzy in certain frames and the thresholds
used are not necessarily optimized. This disappearance of contours creates FNs compared with the
ground truth. Consequently, over-detection measures such as Υ, Dk and Θ are not disturbed by these
FNs, see scores in Figure A2. However, the measures that combine over- and under-detection or only
under-detect are seriously disturbed by the occurrence of these FNs (i.e., the disappearance of the
horizontal contour). This results in major error peaks in the score curves after 200 frames. For these
measures, the scores therefore converge somewhat randomly towards 0, rather than smoothly as they
should. These peaks do not occur in the curves for normalized measures. These two examples (V2 and
V3) illustrate the importance of normalization, without which FNs or FPs can lead to serious errors.

Regarding video 4 (V4), containing considerable noise that disturbs the edge detection, the tied
curves of the different measures are displayed in Figure A3. The Hausdorff measure (H) and ∆k behave
stochastically along the video without convergence. Also, on the one hand, Υ behaves like Dk, Θ,
Sk

k=2, RDEk=2 and f2d6, globally decreasing until the half of the video, then stay relatively constant
otherwise. On the other hand, Ω, Γ and Ψ stagnate and do not enable analysis of the movement of
the shape by visualizing these curves. Lastly, the λ measure behaves as expected with a minimum at
the end.
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Figure A1. Behaviors of non-normalized localization metrics on real experiment with noisy images
tied to video 2 (V2), with images of size 720 × 1280, see Figure 5.
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Figure A2. Behaviors of non-normalized localization metrics on real experiment with noisy images
tied to video 3 (V3), with images of size 720 × 1280, see Figure 6.
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Figure A3. Behaviors of non-normalized localization metrics on real experiment with noisy images
tied to video 4 (V4), with images of size 720 × 1280, see Figure 6. Plots from [20].
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