47,841 research outputs found

    Estimating operator norms using covering nets

    Get PDF
    We present several polynomial- and quasipolynomial-time approximation schemes for a large class of generalized operator norms. Special cases include the 2→q2\rightarrow q norm of matrices for q>2q>2, the support function of the set of separable quantum states, finding the least noisy output of entanglement-breaking quantum channels, and approximating the injective tensor norm for a map between two Banach spaces whose factorization norm through ℓ1n\ell_1^n is bounded. These reproduce and in some cases improve upon the performance of previous algorithms by Brand\~ao-Christandl-Yard and followup work, which were based on the Sum-of-Squares hierarchy and whose analysis used techniques from quantum information such as the monogamy principle of entanglement. Our algorithms, by contrast, are based on brute force enumeration over carefully chosen covering nets. These have the advantage of using less memory, having much simpler proofs and giving new geometric insights into the problem. Net-based algorithms for similar problems were also presented by Shi-Wu and Barak-Kelner-Steurer, but in each case with a run-time that is exponential in the rank of some matrix. We achieve polynomial or quasipolynomial runtimes by using the much smaller nets that exist in ℓ1\ell_1 spaces. This principle has been used in learning theory, where it is known as Maurey's empirical method.Comment: 24 page

    Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Distributional Operators

    Full text link
    In this paper we introduce a generalized Sobolev space by defining a semi-inner product formulated in terms of a vector distributional operator P\mathbf{P} consisting of finitely or countably many distributional operators PnP_n, which are defined on the dual space of the Schwartz space. The types of operators we consider include not only differential operators, but also more general distributional operators such as pseudo-differential operators. We deduce that a certain appropriate full-space Green function GG with respect to L:=P∗TPL:=\mathbf{P}^{\ast T}\mathbf{P} now becomes a conditionally positive definite function. In order to support this claim we ensure that the distributional adjoint operator P∗\mathbf{P}^{\ast} of P\mathbf{P} is well-defined in the distributional sense. Under sufficient conditions, the native space (reproducing-kernel Hilbert space) associated with the Green function GG can be isometrically embedded into or even be isometrically equivalent to a generalized Sobolev space. As an application, we take linear combinations of translates of the Green function with possibly added polynomial terms and construct a multivariate minimum-norm interpolant sf,Xs_{f,X} to data values sampled from an unknown generalized Sobolev function ff at data sites located in some set X⊂RdX \subset \mathbb{R}^d. We provide several examples, such as Mat\'ern kernels or Gaussian kernels, that illustrate how many reproducing-kernel Hilbert spaces of well-known reproducing kernels are isometrically equivalent to a generalized Sobolev space. These examples further illustrate how we can rescale the Sobolev spaces by the vector distributional operator P\mathbf{P}. Introducing the notion of scale as part of the definition of a generalized Sobolev space may help us to choose the "best" kernel function for kernel-based approximation methods.Comment: Update version of the publish at Num. Math. closed to Qi Ye's Ph.D. thesis (\url{http://mypages.iit.edu/~qye3/PhdThesis-2012-AMS-QiYe-IIT.pdf}

    MapReduce and Streaming Algorithms for Diversity Maximization in Metric Spaces of Bounded Doubling Dimension

    Get PDF
    Given a dataset of points in a metric space and an integer kk, a diversity maximization problem requires determining a subset of kk points maximizing some diversity objective measure, e.g., the minimum or the average distance between two points in the subset. Diversity maximization is computationally hard, hence only approximate solutions can be hoped for. Although its applications are mainly in massive data analysis, most of the past research on diversity maximization focused on the sequential setting. In this work we present space and pass/round-efficient diversity maximization algorithms for the Streaming and MapReduce models and analyze their approximation guarantees for the relevant class of metric spaces of bounded doubling dimension. Like other approaches in the literature, our algorithms rely on the determination of high-quality core-sets, i.e., (much) smaller subsets of the input which contain good approximations to the optimal solution for the whole input. For a variety of diversity objective functions, our algorithms attain an (α+ϵ)(\alpha+\epsilon)-approximation ratio, for any constant ϵ>0\epsilon>0, where α\alpha is the best approximation ratio achieved by a polynomial-time, linear-space sequential algorithm for the same diversity objective. This improves substantially over the approximation ratios attainable in Streaming and MapReduce by state-of-the-art algorithms for general metric spaces. We provide extensive experimental evidence of the effectiveness of our algorithms on both real world and synthetic datasets, scaling up to over a billion points.Comment: Extended version of http://www.vldb.org/pvldb/vol10/p469-ceccarello.pdf, PVLDB Volume 10, No. 5, January 201
    • …
    corecore