4,365 research outputs found

    A New Proof of P-time Completeness of Linear Lambda Calculus

    Full text link
    We give a new proof of P-time completeness of Linear Lambda Calculus, which was originally given by H. Mairson in 2003. Our proof uses an essentially different Boolean type from the type Mairson used. Moreover the correctness of our proof can be machined-checked using an implementation of Standard ML

    Light Logics and the Call-by-Value Lambda Calculus

    Full text link
    The so-called light logics have been introduced as logical systems enjoying quite remarkable normalization properties. Designing a type assignment system for pure lambda calculus from these logics, however, is problematic. In this paper we show that shifting from usual call-by-name to call-by-value lambda calculus allows regaining strong connections with the underlying logic. This will be done in the context of Elementary Affine Logic (EAL), designing a type system in natural deduction style assigning EAL formulae to lambda terms.Comment: 28 page

    Session Types in Abelian Logic

    Full text link
    There was a PhD student who says "I found a pair of wooden shoes. I put a coin in the left and a key in the right. Next morning, I found those objects in the opposite shoes." We do not claim existence of such shoes, but propose a similar programming abstraction in the context of typed lambda calculi. The result, which we call the Amida calculus, extends Abramsky's linear lambda calculus LF and characterizes Abelian logic.Comment: In Proceedings PLACES 2013, arXiv:1312.221

    A type system for PSPACE derived from light linear logic

    Full text link
    We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial space: dual light affine logic with booleans (DLALB). To build DLALB we start from DLAL (which has a simple type language with a linear and an intuitionistic type arrow, as well as one modality) which characterizes FPTIME functions. In order to extend its expressiveness we add two boolean constants and a conditional constructor in the same way as with the system STAB. We show that the value of a well-typed term can be computed by an alternating machine in polynomial time, thus such a term represents a program of PSPACE (given that PSPACE = APTIME). We also prove that all polynomial space decision functions can be represented in DLALB. Therefore DLALB characterizes PSPACE predicates.Comment: In Proceedings DICE 2011, arXiv:1201.034
    corecore