5 research outputs found

    A new procedure to compute imprints in multi-sweeping algorithms

    Get PDF
    One of the most widely used algorithms to generate hexahedral meshes in extrusion volumes with several source and target surfaces is the multi-sweeping method. However, the multi-sweeping method is highly dependent on the final location of the nodes created during the decomposition process. Moreover, inaccurate location of inner nodes may generate erroneous imprints of the geometry surfaces such that a final mesh could not be generated. In this work, we present a new procedure to decompose the geometry in many-to-one sweepable volumes. The decomposition is based on a least-squares approximation of affine mappings defined between the loops of nodes that bound the sweep levels. In addition, we introduce the concept of computational domain, in which every sweep level is planar. We use this planar representation for two purposes. On the one hand, we use it to perform all the imprints between surfaces. Since the computational domain is planar, the robustness of the imprinting process is increased. On the other hand, the computational domain is also used to compute the projection onto source surfaces. Finally, the location of the inner nodes created during the decomposition process is computed by averaging the locations computed projecting from target and source surfaces.Postprint (published version

    Surface Mesh Generation based on Imprinting of S-T Edge Patches

    Get PDF
    AbstractOne of the most robust and widely used algorithms for all-hexahedral meshes is the sweeping algorithm. However, for multi- sweeping, the most difficult problems are the surface matching and interval assignment for edges on the source and target surfaces. In this paper, a new method to generate surface meshes by imprinting edge patches between the source and target surfaces is proposed. The edge patch imprinting is based on a cage-based morphing of edge patches on the different sweeping layers where deformed and undeformed cages are extracted by propagating edge patches on the linking surfaces. The imprinting results in that the source or target surfaces will be partitioned with the imprinted edge patches. After partitioning, every new source surface should be matched to a new specific target surface where surface mesh projection from one-to-one sweeping based on harmonic mapping[19] can be applied. In addition, 3D edge patches are projected onto 2D computational domains where every sweeping level is planar in order to increase the robustness of imprinting. Finally, the algorithm time complexity is discussed and examples are provided to verify the robustness of our proposed algorithm

    A new procedure to compute imprints in multi-sweeping algorithms

    No full text
    One of the most widely used algorithms to generate hexahedral meshes in extrusion volumes with several source and target surfaces is the multi-sweeping method. However, the multi-sweeping method is highly dependent on the final location of the nodes created during the decomposition process. Moreover, inaccurate location of inner nodes may generate erroneous imprints of the geometry surfaces such that a final mesh could not be generated. In this work, we present a new procedure to decompose the geometry in many-to-one sweepable volumes. The decomposition is based on a least-squares approximation of affine mappings defined between the loops of nodes that bound the sweep levels. In addition, we introduce the concept of computational domain, in which every sweep level is planar. We use this planar representation for two purposes. On the one hand, we use it to perform all the imprints between surfaces. Since the computational domain is planar, the robustness of the imprinting process is increased. On the other hand, the computational domain is also used to compute the projection onto source surfaces. Finally, the location of the inner nodes created during the decomposition process is computed by averaging the locations computed projecting from target and source surfaces

    A New Procedure to Compute Imprints in Multi-sweeping Algorithms

    No full text

    A new procedure to compute imprints in multi-sweeping algorithms

    No full text
    One of the most widely used algorithms to generate hexahedral meshes in extrusion volumes with several source and target surfaces is the multi-sweeping method. However, the multi-sweeping method is highly dependent on the final location of the nodes created during the decomposition process. Moreover, inaccurate location of inner nodes may generate erroneous imprints of the geometry surfaces such that a final mesh could not be generated. In this work, we present a new procedure to decompose the geometry in many-to-one sweepable volumes. The decomposition is based on a least-squares approximation of affine mappings defined between the loops of nodes that bound the sweep levels. In addition, we introduce the concept of computational domain, in which every sweep level is planar. We use this planar representation for two purposes. On the one hand, we use it to perform all the imprints between surfaces. Since the computational domain is planar, the robustness of the imprinting process is increased. On the other hand, the computational domain is also used to compute the projection onto source surfaces. Finally, the location of the inner nodes created during the decomposition process is computed by averaging the locations computed projecting from target and source surfaces
    corecore