7,409 research outputs found

    Are Aquinas and Whitehead Metaphorical and Analogical All the Way Down?

    Get PDF
    The paper argues from the perspective of a significant strand of interpretation of Aquinas and from insights in cognitive linguistics that a fruitful dialogue between Whitehead and Thomism needs to take into account that metaphysics and talk about God are metaphorical and analogical all the way down. Cognitive linguistics provides an explanatory scheme for explaining how Aquinas’s tectonic use of analogy shifts the ground of our conventional fields of meanings to create space to conceptualize what otherwise would be beyond grasp and to make inferences possible that otherwise would be unthinkable. The essay concludes with a question, admittedly from a particular trajectory of Thomism and cognitive linguistics, about whether Whitehead’s conception of God adequately accounts for the radically metaphorical “imaginative leap” entailed in the Christian conception of God

    Concept Blending and Dissimilarity: Factors for Creative Design Process: A Comparison between the Linguistic Interpretation Process and Design Process

    Get PDF
    This study investigated the design process in order to clarify the characteristics of the essence of the creative design process vis-à-vis the interpretation process, by carrying out design experiments. The authors analyzed the characteristics of the creative design process by comparing it with the linguistic interpretation process, from the viewpoints of thought types (analogy, blending, and thematic relation) and recognition types (commonalities and alignable and nonalignable differences). A new concept can be created by using the noun-noun phrase as the process of synthesizing two concepts—the simplest and most essential process in formulating a new concept from existing ones. Furthermore, the noun-noun phrase can be interpreted in a natural way. In our experiment, the subjects were required to interpret a novel noun-noun phrase, create a design concept from the same noun-noun phrase, and list the similarities and dissimilarities between the two nouns. The authors compare the results of the thought types and recognition types, focusing on the perspective of the manner in which things were viewed, i.e., in terms of similarities and dissimilarities. A comparison of the results reveals that blending and nonalignable differences characterize the creative design process. The findings of this research will contribute a framework of design practice, to enhance both students’ and designers’ creativity for concept formation in design, which relates to the development of innovative design. Keywords: Noun-Noun phrase; Design; Creativity; Blending; Nonalignable difference</p

    Logic-Based Analogical Reasoning and Learning

    Full text link
    Analogy-making is at the core of human intelligence and creativity with applications to such diverse tasks as commonsense reasoning, learning, language acquisition, and story telling. This paper contributes to the foundations of artificial general intelligence by developing an abstract algebraic framework for logic-based analogical reasoning and learning in the setting of logic programming. The main idea is to define analogy in terms of modularity and to derive abstract forms of concrete programs from a `known' source domain which can then be instantiated in an `unknown' target domain to obtain analogous programs. To this end, we introduce algebraic operations for syntactic program composition and concatenation and illustrate, by giving numerous examples, that programs have nice decompositions. Moreover, we show how composition gives rise to a qualitative notion of syntactic program similarity. We then argue that reasoning and learning by analogy is the task of solving analogical proportions between logic programs. Interestingly, our work suggests a close relationship between modularity, generalization, and analogy which we believe should be explored further in the future. In a broader sense, this paper is a first step towards an algebraic and mainly syntactic theory of logic-based analogical reasoning and learning in knowledge representation and reasoning systems, with potential applications to fundamental AI-problems like commonsense reasoning and computational learning and creativity

    Classifying and completing word analogies by machine learning

    Get PDF
    Analogical proportions are statements of the form ‘a is to b as c is to d’, formally denoted a:b::c:d. They are the basis of analogical reasoning which is often considered as an essential ingredient of human intelligence. For this reason, recognizing analogies in natural language has long been a research focus within the Natural Language Processing (NLP) community. With the emergence of word embedding models, a lot of progress has been made in NLP, essentially assuming that a word analogy like man:king::woman:queen is an instance of a parallelogram within the underlying vector space. In this paper, we depart from this assumption to adopt a machine learning approach, i.e., learning a substitute of the parallelogram model. To achieve our goal, we first review the formal modeling of analogical proportions, highlighting the properties which are useful from a machine learning perspective. For instance, the postulates supposed to govern such proportions entail that when a:b::c:d holds, then seven permutations of a,b,c,d still constitute valid analogies. From a machine learning perspective, this provides guidelines to build training sets of positive and negative examples. Taking into account these properties for augmenting the set of positive and negative examples, we first implement word analogy classifiers using various machine learning techniques, then we approximate by regression an analogy completion function, i.e., a way to compute the missing word when we have the three other ones. Using a GloVe embedding, classifiers show very high accuracy when recognizing analogies, improving state of the art on word analogy classification. Also, the regression processes usually lead to much more successful analogy completion than the ones derived from the parallelogram assumption. © 202

    Completing rule bases in symbolic domains by analogy making

    Full text link
    The paper considers the problem of completing a set of parallel if-then rules that provides a partial description of how a conclusion variable depends on the values of condition variables, where each variable takes its value among a finite ordered set of labels. The proposed approach does not require the use of fuzzy sets for the interpretation of these labels or for defining similarity measures, but rather relies on the extrapolation of missing rules on the basis of analogical proportions that hold for each variable between the labels of several parallel rules. The analogical proportions are evaluated for binary and multiple-valued variables on the basis of a logical expression involving lukasiewicz implication. The underlying assumption is that the mapping partially specified by the given rules is as regular as suggested by these rules. A comparative discussion with other approaches is presented. © 2011. The authors-Published by Atlantis Press

    The Perfective Past Tense in Greek Adolescents with Down Syndrome

    Get PDF
    This study investigates the ability of a group of eight Greek-speaking adolescents with Down Syndrome (DS) (aged 12.1-18.7) to handle the perfective past tense using an acceptability judgement task. The performance of the DS participants was compared with that of 16 typically-developing children whose chronological age was matched with the mental age of the DS group. For existing verbs, both groups showed high accuracy scores for the sigmatic past tense whilst for (potential but non-existing) nonce verbs the DS group performed differently from the controls. Specifically, their judgements were unaffected by a nonce verb's similarity to existing verbs, unlike those of the controls, suggesting that the DS participants were less reliant on similarity-based generalisations when encountering a nonce word than the controls. Apart from that, it was found that people with DS did not show any kind of morphological impairment, replicating previous findings on past tense production in DS

    Accelerating Innovation Through Analogy Mining

    Full text link
    The availability of large idea repositories (e.g., the U.S. patent database) could significantly accelerate innovation and discovery by providing people with inspiration from solutions to analogous problems. However, finding useful analogies in these large, messy, real-world repositories remains a persistent challenge for either human or automated methods. Previous approaches include costly hand-created databases that have high relational structure (e.g., predicate calculus representations) but are very sparse. Simpler machine-learning/information-retrieval similarity metrics can scale to large, natural-language datasets, but struggle to account for structural similarity, which is central to analogy. In this paper we explore the viability and value of learning simpler structural representations, specifically, "problem schemas", which specify the purpose of a product and the mechanisms by which it achieves that purpose. Our approach combines crowdsourcing and recurrent neural networks to extract purpose and mechanism vector representations from product descriptions. We demonstrate that these learned vectors allow us to find analogies with higher precision and recall than traditional information-retrieval methods. In an ideation experiment, analogies retrieved by our models significantly increased people's likelihood of generating creative ideas compared to analogies retrieved by traditional methods. Our results suggest a promising approach to enabling computational analogy at scale is to learn and leverage weaker structural representations.Comment: KDD 201

    Ranking relations using analogies in biological and information networks

    Get PDF
    Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects S={A(1):B(1),A(2):B(2),
,A(N):B(N)}\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}, measures how well other pairs A:B fit in with the set S\mathbf{S}. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in S\mathbf{S}? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS321 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Modelling the Developing Mind: From Structure to Change

    Get PDF
    This paper presents a theory of cognitive change. The theory assumes that the fundamental causes of cognitive change reside in the architecture of mind. Thus, the architecture of mind as specified by the theory is described first. It is assumed that the mind is a three-level universe involving (1) a processing system that constrains processing potentials, (2) a set of specialized capacity systems that guide understanding of different reality and knowledge domains, and (3) a hypecognitive system that monitors and controls the functioning of all other systems. The paper then specifies the types of change that may occur in cognitive development (changes within the levels of mind, changes in the relations between structures across levels, changes in the efficiency of a structure) and a series of general (e.g., metarepresentation) and more specific mechanisms (e.g., bridging, interweaving, and fusion) that bring the changes about. It is argued that different types of change require different mechanisms. Finally, a general model of the nature of cognitive development is offered. The relations between the theory proposed in the paper and other theories and research in cognitive development and cognitive neuroscience is discussed throughout the paper
    • 

    corecore