
 Page 1 of 1

Federation University ResearchOnline
https://researchonline.federation.edu.au
Copyright Notice

© 2020. This manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Lim, S., Prade, H., & Richard, G. (2021). Classifying and completing word analogies by
machine learning. International Journal of Approximate Reasoning, 132, 1–25.

Which has been published in final form at:
https://doi.org/10.1016/j.ijar.2021.02.002

CRICOS 00103D RTO 4909

See this record in Federation ResearchOnline at:
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/186067

https://researchonline.federation.edu.au/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ijar.2021.02.002
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/186067

Classifying and completing word analogies by machine
learning

Suryani Lim1 Henri Prade2 Gilles Richard2

1. Federation University, Churchill, Australia

2. IRIT, CNRS & Université Paul Sabatier, Toulouse, France

Abstract

Analogical proportions are statements of the form ‘a is to b as c is to d’, formally
denoted a : b :: c : d. They are the basis of analogical reasoning which is of-
ten considered as an essential ingredient of human intelligence. For this reason,
recognizing analogies in natural language has long been a research focus within
the Natural Language Processing (NLP) community. With the emergence of word
embedding models, a lot of progress has been made in NLP, essentially assum-
ing that a word analogy like man : king :: woman : queen is an instance of a
parallelogram within the underlying vector space. In this paper, we depart from
this assumption to adopt a machine learning approach, i.e., learning a substitute
of the parallelogram model. To achieve our goal, we first review the formal mod-
eling of analogical proportions, highlighting the properties which are useful from
a machine learning perspective. For instance, the postulates supposed to govern
such proportions entail that when a : b :: c : d holds, then seven permutations
of a, b, c, d still constitute valid analogies. From a machine learning perspective,
this provides guidelines to build training sets of positive and negative examples.
Taking into account these properties for augmenting the set of positive and nega-
tive examples, we first implement word analogy classifiers using various machine
learning techniques, then we approximate by regression an analogy completion
function, i.e., a way to compute the missing word when we have the three other
ones. Using a GloVe embedding, classifiers show very high accuracy when recog-
nizing analogies, improving state of the art on word analogy classification. Also,
the regression processes usually leads to much more successful analogy comple-

Email address: suryani.lim@federation.edu.au (Suryani Lim1 Henri Prade2

Gilles Richard2)

Preprint submitted to IJAR January 3, 2021

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0888613X21000141
Manuscript_47e2cf293c8e8aae261bdb3c0f0ca58c

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0888613X21000141

tion than the ones derived from the parallelogram assumption.

Keywords: Analogy, analogical proportions, natural language, word embedding

1. Introduction

It is widely agreed that human intelligence partly relies on the ability to think
about relations between things, rather than simply about individual entities. Ana-
logical reasoning is one of the facets of this ability [22]. A well-known instance
of this kind of reasoning is based on analogical proportions, which are statements
of the form ‘a is to b as c is to d’, usually denoted a : b :: c : d. For instance,
following the historical example of Rumelhart and Abrahamson [51] “man is to
king as woman is to queen” or another well-known example, “electrons are to the
nucleus as planets are to the sun” are standard analogical proportions. It can then
be considered that a : b :: c : d holds if there is a match between two high-level
relations [17]: the link between a and b matches in some sense the link between
c and d. For instance, electrons are attracted by the nucleus as planets are at-
tracted by the sun, leading to electrons : nucleus :: planets : sun where the
underlying relation is “orbit around”. That is why most computational models
of analogical reasoning assume that a binary relation exists between the pairwise
components of an analogical proportion. Unfortunately, there is no clear knowl-
edge about how these abstract relations are established by a human brain [34].
Very often, representations of formal relations are given in a top-down manner by
assuming a grammar of relations (see [33] for instance). Or these binary relations
are extracted from data as it is the case in [42] for instance. But very few of these
models of relational learning have been applied to real-life datasets such as the
ones which are currently manipulated by the NLP community.

With the emergence of word embedding models [37, 43], a lot of progress
has been made. However, these models provide no hints on how to extract (bi-
nary) relations between words; for instance, we could represent the words “man”,
“king”, “woman” and “queen” using an embedding model, but being able to rep-
resent these words in a model is insufficient to extract the binary relation “gen-
der” between these words. Basic relational reasoning and basic inference can be
achieved without explicit representations of relations. Let us clarify this assertion
by focusing on the case of word analogies. In the embedding context, a word w is
represented as a real-valued vector embed(w) in a low1-dimensional vector space

1Low with regards to the common dimensions used in modern machine learning.

3

Rn (typically n ∈ {50, 100, 200, 300}). A corpus W of words is then embedded
as a discrete subset embed(W) of Rn. These embedding techniques are supposed
to ensure two essential properties:

p1) Vectors representation for words having a similar semantic are located close
together in the final real-valued vector space, e.g., embed(man) should be
close to embed(boy).

p2) Linguistic relations, for example, are assumed to be consistently encoded
as a particular difference vector in the underlying vector space, e.g.,

embed(man)− embed(king) ≈ embed(woman)− embed(queen)

If these assumptions are valid, it becomes an easy game to solve word analogies:
the word x solution of the analogical equation man : king :: woman : x should
be such that:

embed(x) = embed(woman)− (embed(man)− embed(king))

This comes to consider embed(man), embed(king), embed(woman), embed(x)
as the summits of a parallelogram in Rn. Since the Rn’s are continuous spaces, the
operation embed(woman) − (embed(man) − embed(king)) is unlikely to land
exactly in embed(W), i.e.,

embed(woman)− (embed(man)− embed(king)) /∈ embed(W)

The solution is then to look for the most similar element (in terms of cosine sim-
ilarity) lying in embed(W). Back to the previous example, these methods lead to
queen as the most similar word embedding of

embed(woman)− (embed(man)− embed(king))

Despite having their own drawbacks [30], these models still achieved much suc-
cess in solving word analogies. In fact, the methods based on such techniques
consistently outperform traditional methods by a significant margin. In this paper,
we want to build upon this success but without making any assumption that the
two previous properties p1 and p2 are valid. Therefore, to deal with word analo-
gies, we depart from the parallelogram approach. We do not assume anything
about the vector interpretation of word analogies. Then, our aim in this paper is
to investigate if we could learn a modeling of analogical proportion that is better
than the parallelogram view which dates back to [51]. This is why we do not deal

4

with the learning of the embedding, even if it is also a relevant machine learning
task as it would be the case in a computational linguistic perspective (as in [4]).
In fact, the limitations of the parallelogram view may be either due to the imper-
fection of the embedding, or due to the fact that the parallelogram would not be a
perfect model of analogical proportion, or both.

Here, we use an existing embedding, GloVe [44], and we focus on the search
for a suitable model for analogical proportions between words. In fact, GloVe is
not unique; there is at least one recent well-known embedding model developed
in [36]. Nevertheless, it appears that the performance of the other related works
is more related to the formula defining the analogical proportions itself than to
the word embedding process. Moreover, as shown in [30], there is a plethora of
hyper-parameters which can be tuned in the embedding algorithms, which can
have a large impact on the success of word representation methods. Contrary to
the initial claim of [43], the superiority of GloVe is debatable: other embeddings,
after parameter tuning, perform better than GloVe in a majority of analogy-related
tasks [15, 8]. For that reason, GloVe is a good candidate to test our approach
because its success could not be attributed to the performance of the embedding.

In short, to increase the performance of a task, we could (a) tune an embedding
to suit the formula, or (b) to find or learn another formula to capture the hidden
relationships in the given embedding [15]. In this paper, we choose option (b).
More precisely, we proceed as follows:

1. We try machine learning algorithms as binary classifiers of analogies. Such
a classifier takes as input a quadruple of words (a, b, c, d) and output 1 if
a : b :: c : d holds, 0 otherwise.

2. We also test algorithms for solving analogical equations such as a : b :: c :
x. The solving process is a regression task where we have to approximate
a hidden function f such that the solution of the equation a : b :: c : x is
x = f(a, b, c).

For experimenting our approach on the two tasks above, we need to get datasets
of quadruples of words (a, b, c, d) which are considered as cognitively acceptable
analogical proportions. Moreover, if we consider that an analogical proportion
(a : b :: c : d) can be built from two pairs of words (a, b) and (c, d) sharing
the same relation R, we can also take advantage of dataset of pairs to build new
analogical proportions. This means that, starting from two pairs (a, b) and (c, d),
which are known to belong to the same class, we may consider a : b :: c : d as
a valid analogical proportion. Still, the analogical proportions obtained this way
may be debatable as discussed in Subsections 2.4 and 4.1

5

As a consequence, we experiment on 4 datasets:

1. The first one is the standard Google Analogy Test Set having more or less
20,000 analogical proportions2.

2. The second one is BATS (Bigger Analogy Test Set)3 [18], which is made of
pairs, and as such departs from Google dataset. From the pairs in BATS, we
can obtain 99,200 quadruples of words viewed as analogical proportions in
40 morphological and semantic categories.

3. The third one, usually called DiffVec4 [59] is also made of pairs. Vylomova
et al. [59] have introduced this large dataset covering many well-known
lexical relation types, leading to a total of 36 classes of pairs, highly un-
balanced in terms of size (from a class of 6 examples to a class of 3,583
examples), with a total number of 12,458 pairs. DiffVec refers to Differ-
ence Vectors method. Bouraoui et al. [8] keeps the name DiffVec for the
dataset of pairs introduced in [59]. We shall continue to use DiffVec for
referring to the set of quadruples that we build by taking pairs of pairs in
the same class (as we do with BATS).

4. Finally, the fourth one is SAT (Scholastic Assessment Test), a former col-
lege entrance exam [57]5. This dataset is quite small with only 374 analo-
gies such as livid : anger :: radiant : happiness but it is so challenging
that even a very good student will get no more than 60% success rate.

This paper is a fully revised and expanded version of a conference paper [31].
Apart from adding more extensive sets of experiments, we have also investigated
in more detail the impact of the formal modeling of analogical proportions on the
machine learning implementation. We make several contributions to the field as
summarized below:

1. We formally investigate what can be expected from an analogical relation.
We show that an intuitive property like unicity postulate does not fit with
word analogies. As such, it has to be rejected.

2. Starting from the previous formal properties expected from an analogy re-
lation, we build positive and negative training sets from our datasets. Doing
so, we are able to build classifiers from a proper set of examples.

2Download from http://download.tensorflow.org/data/questions-words.txt.
3Download from https://vecto.space/projects/BATS/.
4Download from

https://github.com/ivri/DiffVec/blob/master/word-pairs-final.SEMBLESS.csv.
5The SAT dataset has been gracefully made available to us by P. Turney.

6

3. Apart from testing diverse machine learning classifiers, we design and im-
plement a neural network to decide whether a quadruple of words is an
analogy or not, with better accuracy than state of the art algorithms, and
even higher accuracy than an average human on the SAT dataset.

4. Finally, we depart from the traditional view of analogical proportions where
finding x such that a : b :: c : x holds is based on a parallelogram view
where the missing x is just the vertex of the parallelogram (a, b, c, x). The
machine learning approaches outperforms state of the art approaches on
Google, BATS and DiffVec datasets.

As far as we know, neither analogy classification nor analogy completion have
been investigated in the same way as we have proposed in this paper, namely
learning a model, instead of starting from the parallelogram model.

The paper is structured as follows. Section 2 recalls the postulates characteriz-
ing analogical proportions and identifies a rigorous method for enlarging a set of
examples and counter-examples (also known as data augmentation in the machine
learning community). Section 3 and its subsections provide a new approach to the
recognition/classification of analogical proportions, experimenting with several
algorithms (SVM, random forests, neural networks) for this purpose. Moreover,
we also propose a learning approach for solving analogical proportion equations in
natural language (often referred to as analogy completion in the natural language
processing literature). Section 4 presents and discusses the experimental settings
and Section 5 reports results for datasets Google, BATS and DiffVec. Experiment
results show that machine learning-based techniques are more accurate than the
state of the art, both for classification and regression tasks. We dedicate Section
6 to experiments and results on the SAT dataset. Related work is discussed in
Section 7, before concluding in Section 8.

2. Analogical proportions: What we can expect

Analogical proportions have a long history and the best way to tackle the is-
sues we want to investigate is to start from a simple formal modeling. From a
machine learning perspective, it is also interesting to understand what is the neg-
ative example of an analogy.

7

2.1. Basic postulates
Taking inspiration from the properties of numerical proportions, such as geo-

metric proportions (i.e., a
b
= c

d
), or arithmetic proportions6 (i.e., a − b = c − d),

analogical proportions are quaternary relations, supposed to obey the three fol-
lowing first-order logic postulates (e.g., [27]): ∀a, b, c, d,7

1. a : b :: a : b (reflexivity);
2. a : b :: c : d→ c : d :: a : b (symmetry);
3. a : b :: c : d→ a : c :: b : d (central permutation).

These basic definitions have been widely investigated in [45]. We recall here some
of the direct consequences of these postulates like

• a : a :: b : b (identity);

• a : b :: c : d→ b : a :: d : c (internal reversal);

• a : b :: c : d→ d : b :: c : a (extreme permutation);

• a : b :: c : d→ d : c :: b : a (complete reversal).

Repeated applications of postulates 2 and 3 show that an analogical proportion
has exactly eight equivalent forms:

a : b :: c : d
= c : d :: a : b
= c : a :: d : b
= d : b :: c : a
= d : c :: b : a
= b : a :: d : c
= b : d :: a : c
= a : c :: b : d.
All these properties strictly fit with the intuitive meaning of a word analogy.

Nevertheless, an intuitive property that we call transitivity, namely:

(a : b :: c : d) ∧ (c : d :: e : f)→ a : b :: e : f

6Note that the parallelogram view of analogical proportions, defined by
−→
ab =

−→
cd, is a point-

wise extension of the arithmetical proportion.
7In the following of this section, we will omit the universal quantifier for readability.

8

is not derivable from the axioms [45]. Despite this property is valid when we
consider, for instance, numerical, arithmetical (a − b = c − d) or geometrical
(a×d = b× c) proportions, it is not universally valid in the sense that we can find
a model of analogy which does not satisfy this property.

Considering words in natural language, if everybody agrees that nurse : patient ::
mother : baby and that mother : baby :: frog : tadpole should hold, very few
people will consider nurse : patient :: frog : tadpole [11] as a valid analogy. In
some sense, it is satisfactory that postulates 1 - 2 - 3 do not allow the derivation of
transitivity.

2.2. Unicity postulate
All the three postulates of analogical proportions are intuitively satisfactory,

and we could ask for something a little bit stronger than postulate (1), but still not
implying transitivity:

4. ∀a, b, x, a : b :: a : x→ (x = b) (unicity)
Consequences of postulates 2 - 3 - 4 that can be derived.

Fact 1. a : a :: b : x =⇒ x = b

Proof: a : a :: b : x =⇒ a : b :: a : x (by 3) =⇒ x = b (by 4) �

Fact 2. a : b :: c : c =⇒ a = b

Proof: a : b :: c : c =⇒ c : c :: a : b (by 2) =⇒ a = b (by Fact 1) �

Fact 3. a : b :: c : b =⇒ a = c

Proof: a :b ::c :b =⇒ a :c ::b :b (by 3) =⇒ a = c (by Fact 2) �

Fact 4. a : b :: c : d ∧ (a 6= b) =⇒ c 6= d

Proof: Suppose c = d. Then a : b :: c : d is a : b :: c : c, and by symmetry,
c : c :: a : b which implies a = b (by Fact 1). Which contradicts the hypothesis
a 6= b. �
Clearly, all the above properties are satisfied by arithmetic proportions. But, when
it comes to word analogies, postulate (4) is not satisfied: for instance, orange :
orange :: banana : yellow is still a valid word analogy that does not match Fact
1. In fact, all homonym words like book, project, close, well, etc. could be likely

9

involved in valid analogical proportions of the type a : a :: c : d involving exactly
three distinct words. So, in the following, we do not assume postulate 4.

Besides, in [41], the authors, acknowledging the fact that human biases can be
found in word embeddings (leading to validating analogical proportions such that
“man is to computer programmer as woman is to homemaker”), discuss analogical
proportions such as “man is to doctor as woman is to doctor”. As can be seen, this
proportion violates Fact 3, a consequence of unicity postulate 4, without involving
homonym words. This later proportion expresses than in the context ‘doctor’
there is no difference between ‘man’ and ‘woman’. Such proportions have an
argumentative flavor, since it expresses what should be, rather than a current state
of things as acknowledged by language corpora. Another use of proportions may
be explanatory as in “the denarius is to the church as water is to life”, suggesting
that ‘denarius’ is something indispensable for the life of the church. In such case,
even the symmetry of (a, b) and (c, d) becomes debatable. Dealing with such
analogical proportions is beyond the scope of this paper.

2.3. Analogy classes and their underlying structure
Given four distinct items a, b, c, d, they can be ordered in 4! = 24 different

ways. Among these 24 permutations of 4 distinct items, there are 3 classes of
8 permutations, each one being stable under the postulates of analogical propor-
tions, since a : b :: c : d can be written in 8 equivalent forms.

As a consequence, as soon as a, b, c, d are all distinct, b : a :: c : d and
a : d :: c : b do not belong to the same class as a : b :: c : d and are in fact
elements of two other different classes. If an element of a class is a valid (resp.
not valid) proportion, then the seven remaining ones are also valid (resp. not
valid). Although it does not follow from postulates 2 - 3 - 4, one can also consider
that if a : b :: c : d holds then neither b : a :: c : d nor a : d :: c : b hold as valid
analogical proportions. This can be observed on the example a =calf, b =cow,
c =foal, d =mare.

It has to be noted that, if a : b :: c : d holds, then there is no permutation among
the eight equivalent configurations displayed above that is of the form b : c :: x : y,
while there are configurations of the forms a : b :: x : y and a : c :: x : y (and
all their transforms by symmetry and central permutation). Concerning the binary
relation interpretation, it suggests that the link between b and c is not relevant
for the proportion to hold, while the links between a and b and between a and c
are relevant. This will be useful when it comes to building a neural network for
regression.

10

Despite their obvious semantic, these fundamental properties of analogical
proportions are rarely used in practice. However, they have implications when it
comes to machine learning, as we will see in Section 4.

2.4. Other types of analogical proportions
As pointed out in [2], we may distinguish between two types of word anal-

ogy. One type where the four words belong to the same conceptual space, as in,
e.g., "calf":"cow"::"foal":"mare" (where all the words refer to animals),
while the other type involves two distinct conceptual spaces, as in "wine":
"French"::"beer":"English" (where the words refer to drinks and peo-
ple)8. For this second type, it appears that central permutation may not be appli-
cable: only symmetry and internal reversal seem to be acceptable. In such a case,
an analogical proportion would have only four equivalent forms, as shown below

a : b :: c : d = c : d :: a : b = b : a :: d : c = d : c :: b : a

Note that symmetry and internal reversal entail complete reversal, which looks
acceptable for analogical proportions involving two conceptual spaces.

As we understand, distinguishing the two types of analogical proportions might
have consequences not only on the logical modeling but also on its experimental
counterpart. However, there are also examples of analogical proportions involving
two conceptual spaces where central permutation is tolerable, for instance with:

"Tokyo": "Japan"::"Paris":"France"

This proportion is based on the relation ToBeTheCapitalOf shared by the two
pairs. For a long time, there have been many discussions about what makes an
analogical proportion valid or fallacious [21, 50]. Generally speaking, it may
seem natural to assume that an analogical proportion can simply be defined as:

a : b :: c : d iff for some relation R,R(a, b) and R(c, d) hold.

This assumption is implicit when using datasets such as BATS and DiffVec. This
definition, which is clearly symmetrical, has several consequences:

• The following implication should hold a : b :: c : d =⇒ b : a :: c : d just
because R−1(a, b) and R−1(c, d) hold.

8Note that orange : orange :: banana : yellow is another example, while
"wine":"French"::"beer":"x" also fails to satisfy unicity since, e.g., "x=Belgians"
would fit as well.

11

• It is unclear that the fact that R(a, b) and R(c, d) hold always entails that
S(a, c) and S(b, d) hold for some relation S (beyond general relations, such
that S = ”being in the same category” i.e. "Tokyo" and "Paris" are
both capital cities). See [21] for a discussion. This questions the validity of
central permutation for relation-based analogical proportions. Think, e.g.,

"Tokyo": "Japan"::"Paris":"France"

• If R is symmetrical, i.e., R(a, b) =⇒ R(b, a), then

a : b :: c : d =⇒ b : a :: c : d

which is quite debatable as shown by the following example:

"black":"white"::"white":"black"

that cannot be considered as a satisfactory analogical proportion despite the
fact that the binary symmetrical relation IsOppositeOf is satisfied by both
sides.

• The relation R may be arbitrary, quite general or vague, as in:

"camera":"water"::"attention":"baby"

which would hold because the number of syllables of the first word in a pair
is just the number of syllables of the second word increased by 1.

In summary, the only properties that hold for sure with relation-based analogi-
cal proportions are ’symmetry’, ‘internal reversal’, and ‘complete reversal’, while
other properties are debatable. Ultimately, the acceptable orderings of 4 words
making a proper analogical proportion may be viewed as a matter of convention,
even if some orderings are certainly more cognitively valid than others. This is
not an issue for the machine learning approaches proposed in this paper since they
consider as valid analogical proportions whatever is given in the dataset of positive
examples. So there is no harm in applying the 8 permutations to each quadruple
issued from these datasets: either the quadruple is an analogical proportion satis-
fying all the postulates, or it is a “weak” one and the result will be another “weak”
one. Indeed, in this work, we are going to use benchmarks made of analogical
proportions of various qualities. This is the case with datasets originally made of
pairs of words, classified into categories.

12

3. Analogy classification and completion: the proposed approaches

We take advantage of the previous theoretical analysis for revisiting the prob-
lems of identifying and solving analogical proportions expressed in natural lan-
guage. We propose a new approach to these problems, which have been widely
investigated by the NLP community [36, 55, 27, 28, 29]. It is now common to con-
vert words into numerical vectors for computational purposes, a process known as
word embedding. If V is the target vector space and W the corpus of words, we
denote embed(W) the subset of V representing the words of W , and obviously,
whatever the embedding process, embed(W) ⊂ V . The underlying assumption
is that a “good” word embedding encodes linguistic relations in such a way that
they are identifiable via linear vector offset. This leads to the well-known paral-
lelogram view of analogies. In fact, this view has to be seriously tuned to detect
analogies in a diverse corpus of data [18, 30, 8]. Given the embedding process
(here GloVe in the experiments), we depart from this assumption and tackle the is-
sue from another viewpoint. Instead of assuming that a word analogy a : b :: c : d
is valid iff embed(a)− embed(b) ' embed(c)− embed(d), which allows to clas-
sify a quadruple of words, we learn from word analogies examples how to classify
without assuming any underlying predefined formula. Equipped with the obser-
vations from Section 2, we have a rigorous way to augment the initial datasets, as
it is often needed in machine learning. Let us first investigate some works related
to what we do and which could, in one way or another, serve as baselines, before
presenting our approaches to analogy classification and completion.

3.1. Analogy classification and completion in the literature
The method for deciding if four items a, b, c, d constitute an analogical propor-

tion depends on their representation level. In case a, b, c, d are described in terms
of Boolean, nominal or numerical features, this binary classification problem can
be directly solved from the definitions of a : b :: c : d for these different kinds of
features [45], [16].

In case a, b, c, d are words represented by their embeddings (the case under
interest in this paper), the representation relies on the parallelogram view. From
a strict vector offset interpretation, it amounts to state that a : b :: c : d holds iff
a − b = c − d.9 Allen and Hospedales [10] enable word analogies to be proba-
bilistically grounded, providing the first rigorous explanation for the presence of

9For the sake of simplicity, we use the same notation for a word and its embedding.

13

linear relationships between the word embeddings of analogies: this could explain
why the parallelogram relation is often satisfied.

Analogy completion is the task of looking for x such that a : b :: c : x holds.
The method for solving the problem (and its difficulty) again depends on the rep-
resentation level used for a, b, c. In case a, b, c are described in terms of Boolean,
nominal or numerical features, the computation of the representation of the solu-
tion is relatively easy; see [5, 12]. When words are represented by embeddings,
the parallelogram view leads to computing c − a + b as a good approximation of
the embedding of the solution d. It has been recognized that the straightforward
computation of d as being the nearest neighbor of c−a+b in terms of cosine sim-
ilarity (namely considering argmaxd ∈ embed(W)cos(d, c − a + b) as the solution)
is not fully satisfactory in practice.

• That is why in [29], Levy and Goldberg introduced the 3CosMul formula
as a replacement of the above additive formula. We may notice that (1) is
not far from a geometric proportion-based view of analogical proportions
as a

b
= c

d
(which would lead to d = b×c

a
):

argmaxd ∈ embed(W)
d · b× d · c
d · a+ ε

(1)

where · is the scalar product. 3CosMul finds the final solution d by ranking
all words in the dictionary according to the above quotient, and choosing
the word d which generates the highest value.

• Another parallelogram variant is argmaxd ∈ embed(W)cos(d−c, b−a) (named
PairDirection in [29] and PairDistance in Drozd et al. [15]). One may
also use a weighted mean of cos(d − c, b − a) and cos(d, c − a + b) as in
[25]. Improving PairDistance, the authors of [15] introduced the LRCos
method. This is an alternative approach starting from a set of word pairs
(a, b). This set is organized into subsets involving pairs sharing a common
relation. In this context, a : b :: c : d is understood as aRb and cRd,
for some relation R where a and c are source words, b and d are target
words. For instance ‘Japan is to Tokyo as France is to Paris’ written as
Japan : Tokyo :: France : Paris, andR is the ‘country-capital’ relation.

Given a set of word pairs (source, target), then “the available target words
are used as positive samples, and source words, along with random words
from the dictionary, as negative samples” in a logistic regression problem.
This means, continuing the same example with a given set of valid pairs

14

(Japan, Tokyo), (France, Paris), (Australia, Canberra), etc., positive
examples contain Tokyo, Paris, Canberra, etc., negative examples con-
tain Japan, France, Australia, etc. plus some randomly chosen words
from the dictionary, not belonging to the ‘capital’ class. When given a test
word such as England, LRCos tries to find words in the class ’capital’ and
close to England.

• The works of Bouraoui et al. [8] are in a relation induction perspective.
Having a set of pair examples (a, b) satisfying some relation, the authors
of [8] are looking for pairs (c, d) satisfying the same relation. This is not
exactly what has been done in [15], where a, b, c are given and the authors
focus on analogy completion.

Bouraoui et al. suggest two models for identifying word pairs: a transla-
tion model and regression model. While the translation model relies on the
difference between the embedding of the 2 words a − b, thus assuming a
relation like b = a+ v, the regression model assumes a more general linear
relation such as b = U.a+ v (where U is a matrix, b, a and v are vectors or
the same dimension). In the translation model (in the spirit of LRCos), the
authors want “to accept (s, t) as a valid instance if (i) s and t are sufficiently
similar to the vector representations of the given source and target words,
and (ii) the translation t− s has a sufficiently high probability”. The trans-
lation model departs from LRCos since in the analogy completion task of
[15], s is always given as a valid source word while in a relation induc-
tion problem, the authors “need to consider the probability that s is a valid
’source word’ ”. The regression model relaxes the simplistic assumption of
the difference-based approach from the parallelogram view, but is generally
outperformed by the translation model. None of these two approaches are
used in an analogy completion perspective.

In view of the above descriptions, it is natural to compare our works with:

• The current best method from the translation (and regression) model [8] for
analogy classification task, since it outperforms the other approaches;

• 3CosMul and LRCos for analogy completion task.

In fact, none of the previous works have been experimented on SAT dataset. As
a consequence, regarding our experiences with SAT, we will compare with the
works of [56]. We now describe our approach for classifying word analogies, and
then for analogy completion.

15

3.2. Analogy classification
In the works previously reviewed, analogy classification resorts to relation in-

duction. But the problem of deciding if a quadruple of words is a valid analogical
proportion or not is in fact a purely binary classification machine learning task. As
far as we know, it has not been widely investigated as such; see [54, 3] for other
approaches.

We may think of diverse machine learning approaches for analogical pro-
portions classification. We have tried four methods: SVM (Support Vector Ma-
chines), Random Forest, Neural Network and Convolutional Neural Network as
explained below.

• SVM [13] is a popular classification algorithm10. We tried several kernels:
linear, rbf, sigmoid and polynomial kernel and weight 1, 2, 3 and 4. While
we get poor results with linear kernel, the polynomial kernel, which is com-
putationally expensive, provides excellent results with a weight of 2.

• Random forests [9] have been successfully used for classification in differ-
ent domains, so it seems to be an appropriate method for comparison. We
tried random forest using various parameters, such as the number of trees,
maximum depth and split. The best results were obtained with the following
parameters:100 trees, no maximum depth, and a minimum split of 2.

• The traditional fully connected Neural Network (NN) is another popular
classifier which has been successfully applied in diverse domains. It is inter-
esting to see how well such a network performs compared to the more com-
plex Convolutional Neural Network described in the next section. The net-
work we tried is made up of five fully connected layers. The first four layers
use Relu activation, batch normalization with the following numbers of neu-
rons: the first layer has 4 × n neurons, where n is the vector length of the
embedding, and the number of neurons is halved for the subsequent layer,
so the fourth layer has n/2 neurons. In this paper, n ∈ {50, 100, 200, 300}.
The last layer (the fifth) has one neuron with a sigmoid activation function,
The network was trained using the Adam optimization algorithm [26].

10For SVM and Random Forest, we used the implementation as provided by Scikit-Learn
library (https://scikit-learn.org). For NN and CNN, we use standard Keras and Tensorflow li-
braries.

16

• Convolutional Neural Network. This network is more complex and is de-
scribed in more detail in the next section.

3.3. Convolutional Neural Networks for analogy classification
One of the most successful methods for image classification is Convolutional

Neural Network (CNN) (see e.g. [40]): this type of network can capture high-
level features not easily extracted otherwise, especially within pictures. So, we
believe CNN can also capture hidden semantic links underlying a valid analogy
by transforming the analogy classification task into an image classification task.

Stacking together the 4 vectors with n components corresponding to a quadru-
ple a, b, c, d of words, we get a matrix n × 4 that we are going to process as we
would do for an image. With filters respecting the boundaries of the 2 pairs, this
is the structure of the CNN:

• 1st layer (convolutional): 128 filters of size height × width = 1 × 2 with
strides (1, 2) and Relu activation. This means that we are working compo-
nent by component (with a vertical stride of 1) and we move from pair (a, b)
to pair (c, d) with horizontal stride 2.

• 2nd layer (convolutional): 64 filters of size (2, 2) with strides (2, 2) and
Relu activation. This is an intermediary step for reducing the dimension
before going to the final dense layer.

• 3rd layer (dense): one output and sigmoid activation as we want a score
between 0 and 1, values of 0.5 or above are considered positive (the default
approach for binary classification).

a b c d

.

.

.

64 2x2 filters

.

.

.

.

output[0,1]flatten

128 1x2 filters

Figure 1: Structure of the CNN as a classifier.

Note that we use only one intermediary layer due to the modest size of the input.
The first two convolution layers use batch normalization and Relu activation func-
tion, the output layer uses sigmoid activation. The CNN was trained using Adam
optimization algorithm. This is a standard way to proceed. The structure of this

17

network can be seen in Figure 1. Note that the CNN approach returns a number
between 0 and 1 which might be considered as an empirical estimate of the quality
of the candidate analogical proportion. However, the merit of this estimate has not
been further empirically explored.

In Section 5, we show the results for Google (Table 4), BATS (Table 5) and
DiffVec (Table 6). In Section 6, we provide results for SAT. These tables also
report the baseline results to get a clear comparison. Some more detailed tables
can be found in annexes.

3.4. Analogy completion
In this paper, a, b, c are words represented by their respective embeddings, not

even assuming any information about some categorization of the words. We agree
that the solution d to the analogical equation a : b :: c : x may be a function f of
a, b, and c. But, in contrast to the works described in subsection 3.1, we neither
assume a given formula for f nor consider the completion task from a relation
induction viewpoint. We propose to solve the equation a : b :: c : x by learning x
via regression. This is a multi-variable regression problem where the training set
is built from the initial set of analogies a : b :: c : d as pair ((a, b, c), d). This does
not necessarily call for a functional view, still neural net approaches fit with such
a view. For predicting x from a given triple of words (a, b, c) and a training set
of complete analogical proportions, can be achieved via various machine learning
techniques.

We may think of using statistical methods regression which do not refer to
some hidden function f as it is the case for the parallelogram-inspired methods.
We thus tried lasso regression [52, 46] with various parameters, but the results
were very poor: the best accuracy we got is 42.8%, without normalisation and
with an alpha value of 0.001.

From another viewpoint, analogy completion may be considered as a matter of
estimating a hidden function f such that f(a, b, c) = d where d is the solution of
the completion problem a : b :: c : x. Considering a multi-layer neural network as
a universal function estimator, it is appropriate to use such a network to estimate
our target function. Regarding the equation solving problem, we first consider
a, b, c as the input of our network, and d as the output.

We first designed a neural net with 3× n input neurons and n output neurons.
We got very poor results. We think that this initial failure was due to the way
we process the 3 inputs without taking into account the similarity/dissimilarity:
between a and b on one side and between a and c on the other side. So we move

18

n

n

f (a,b)
1 n

d

n

21 ,f (a,c)g()f (a,b)

f (a,c)
2

ab

ac

2n

2n

2n

Figure 2: Structure of the neural network for analogy completion.

to a more sophisticated network whose structure parallels the following hidden
links:

1. The link between a and b is described via a (unknown) function f1;
2. The link between a and c is described via a (unknown) function f2;
3. The final function g to be estimated takes f1(a, b) and f2(a, c) as parameters

i.e.: d = g(f1(a, b), f2(a, c)).

As described in Section 2.3, the link between b and c is irrelevant for the propor-
tion to hold, so there is no need to establish this relationship in the network. Using
this remark, we approximate this function g(f1, f2) via two networks approximat-
ing f1 (resp. f2). A final neural network approximating g received as input two
values: the output of f1 and the output of f2. The output of g(f1, f2) is d, is then
an approximation of d = g(f1(a, b), f2(a, c)). Figure 2 describes the structure of
the regression neural network.

The first layer takes as its input (a, b) and (a, c), effectively estimating the
functions f1(a, b) and f2(a, c). The input dimension of this first layer for these
two functions is twice the length of the input; that is, if the dimension of a, b or
c is 50, then the input is 100. In the second layer, the output from the first layer
of these two functions is reduced to dimension n; the second layer effectively acts
as an encoder. The third layer concatenates the output of the second layer. The
fourth layer (the last hidden layer) also acts as an encoder by reducing the size of
the dimension to n before producing the final results (d) which also has n dimen-
sion. All hidden layers use Relu activation function, the last layer (output) uses
linear activation function. The network was still trained using Adam optimization
algorithm. The output of the network, d′, is unlikely to be a GloVe embedding, so
we have to find the word d the most similar (in terms of cosine similarity) to d′,
i.e. the nearest neighbor of d′ in embed(W). This word d is hopefully the correct
answer.

19

4. Experimental settings

As explained in Section 1, in all our experiments, we use GloVe [43] as the
embedding model. Glove provides several publicly available pre-trained Rn word
vectors which can be downloaded from https://nlp.stanford.edu/projects/glove/,
with dimension n in {50, 100, 200, 300} (Wikipedia dump). Ultimately, our datasets
are loaded as CSV files. In the case of our CNN for classification, each row is
compiled into a real-valued matrix of dimension n × 4 that we consider as an
image. The GloVe embedding originally contained 400,000 words. To speed
up processing time, we removed non-alphabetical words (numbers, punctuations,
underscores), and we are left with 317,544 words. This has no effect on the em-
bedding process as the removed words do not appear in the analogy datasets11

Before presenting our four datasets (Google, BATS, DiffVec and SAT) in de-
tail, and the way we build a training set for machine purposes, we discuss the link
between relational induction and analogy classification, and we propose a mea-
sure of the quality of a dataset as a repository of analogical proportions, given a
word embedding.

4.1. Link with relation induction
In the NLP literature, Relational Induction (RI) is often linked to building

analogies. In that context, RI is looking for the relationship (e.g. antonymy, syn-
onymy, category membership, etc.) between two words: this can also be con-
sidered as a classification task for pairs of words where the relation between two
words is the class label. BATS [18, 15] and DiffVec [59] are two well-known
datasets dedicated to RI experiments. Let us consider 3 examples obtained from
DiffVec [59] by combining two pairs from the same class:

• (accident, damage) and (bath, cleanliness) are two instances of a relation
expressing a link CAUSE − PURPOSE Cause : Effect. Joining these
two instances lead to a debatable analogical proportion:

accident : damage :: bath : cleanliness

The cognitive difficulty when looking at this quadruple as an analogical
proportion seems to come from the fact that causality is quite a general
relation, and that here the physical mechanisms at work in accidents and
baths have little in common.

11. Our whole python code with the complete requirements, as well as our datasets (except
SAT) are publicly available on github repository https://github.com/gillesirit/analogy.

20

• Looking at class CAUSE − PURPOSE Action/Activity : Goal, from
which we obtain:

speak : express :: starving : hungry

which looks weak for reasons similar to the previous example.

• The relation ATTRIBUTE Action : ObjectAttribute is satisfied by the
two word pairs (paint, house) and (wine, drink). Still, it is hard to think
of

paint : house :: wine : drink

as a genuine analogical proportion, since the explanation to support it seems
quite intricate.

The parallel between two pairs sharing some relation does not always seem to
be a sufficient requirement for making widely acknowledged and thus cognitively
valid analogical proportions, as discussed in detail in Subsection 2.4. The above
remarks tend to suggest that, strictly speaking, both BATS and DiffVec cannot be
considered as proper analogical proportions datasets. A measure of the analogical
quality of a dataset, supporting this claim, is presented in the next Subsection.
However, as mentioned before, the proposed machine learning procedures still
apply to “weak” analogical proportions.

Let us point out that RI task is not the same, strictly speaking, as analogy clas-
sification. Indeed RI amounts to classifying new pairs among a set of candidate
relations (e. g., 36 classes for DiffVec and 40 for BATS). Our analogy classifica-
tion task deals with quadruples (positive and negatives examples built from pairs
of the same class when dealing with BATS and DiffVec) and is a binary classifica-
tion problem: deciding if a quadruple of words constitutes, or not, an analogical
proportion.

Moreover, generally speaking, the task of classifying a quadruple (a, b, c, d)
as a valid proportion does not necessarily require identifying the relation linking
a and b (or even (c, d)).

Nevertheless, a proper analogy classifier could be used for RI in the following
way: Having a finite set of classes and knowing that pair (a, b) belongs to class C,
checking the quadruple (a, b, c, d) with the analogy classifier could tell us if (c, d)
also belongs to C or not. However, this is not the purpose of this paper to apply
analogy classifiers to RI.

21

4.2. Average analogical dissimilarity of a dataset
As suggested by Linzen [32], the parallelogram equation for solving word

analogies has become a standard evaluation tool for words embedding (such as
GloVe).

In the following, we reuse this idea in a different perspective. We thus assume
that given a reasonably good word embedding, such as GloVe, datasets made of
high quality analogical proportions should lead to parallelograms of better quality
than datasets containing weak proportions.

Let us explain how we have checked this assumption on the 4 datasets. If
a : b :: c : d is considered as a valid analogy, then

embed(a)− embed(b) ' embed(c)− embed(d)

or equivalently

||embed(a)− embed(b)− embed(c) + embed(d)|| ' 0

So, as proposed by Miclet et al. [35], the so called analogical dissimilarity

AD(a, b, c, d) = ||embed(a)− embed(b)− embed(c) + embed(d)||

could be considered as a good measure of how ”far” a : b :: c : d is from being an
analogical proportion, given the embedding. In other words, when AD(a, b, c, d)
is close to 0, a : b :: c : d should be read “a is to b almost as c is to d”. We have
then computed this analogical dissimilarity for each quadruple of the 4 datasets
we have used, then getting the average value per dataset. The results are shown in
Table 1. Note that the values are not normalized w.r.t. the dimension. Clearly, this
average analogical dissimilarity also captures the imperfect nature of the word
embedding. As expected, Google dataset has the smallest deviation, followed

dataset dim 50 dim 100 dim 200 dim 300
GOOGLE 3.86 4.8 6.07 6.79

BATS 5.55 6.55 8.13 9.01
DIFFVEC 6.42 7.6 9.21 10.05

SAT 6.42 7.47 9.26 10.2

Table 1: Datasets average AD for GloVe dimensions 50, 100, 200 and 300

by BATS, DiffVec and SAT. Surprisingly, the deviations of SAT and DiffVec are

22

very similar, but SAT is regarded as a repertory of high quality proportions. This
is likely due to the fact that SAT proportions involve sophisticated vocabularies,
which occur less frequently in the corpus documents so the models for those words
may be less accurate.

4.3. Datasets
Experiments have been performed with 4 distinct datasets:

1. The one proposed by Mikolov et al. [37] - from Google (questions-words
file), containing exactly 19,544 analogies, each line has four distinct words.
These analogies are classified in 14 categories such as ‘common-capitals,
countries’ like Athens : Greece : Ottawa : Canada, ‘country-currency’,
or ‘opposite’ like acceptable : unacceptable :: aware : unaware, etc. It
appears that some analogy can appear in different categories and some of
the categories may contain several occurrences of the same quadruple of
words (but in a different order). When we removed these redundancies, we
got a final dataset of 12,771 distinct analogies. Table 2 describes the classes
with examples, their cardinality with and without redundancy.

2. The one proposed by Gladkova et al. [18, 15], BATS. In fact, BATS is a set
of words pairs (a, b), like (bat, cave). But since (bat, cage) is also accept-
able, BATS contains lines such as (bat, cave/cage). All in all, BATS allows
to build 99,200 analogies from such extended pairs. Due to space limitation,
we omit the table of 40 rows showing BATS categories and denote them as

E01, . . . , E10, D01, . . . , D10, I01, . . . , I10, L01, . . . , L10.

However, for the interested reader, this complete table can be found in [15].
3. The one proposed by Vylomova et al. in [59], DiffVec, initially built of

pairs (a, b) with their corresponding class that we have transformed into a
set of analogical proportions just by considering all options (a : b :: c : d)
as soon as (a, b) and (c, d) belong to the same class (among 36).

4. A dataset of 374 analogies coming from the SAT college entrance test 12.
The analogies in this dataset are entirely semantic and are not syntactic (i.e.
not morphological). That is why dealing with this dataset is highly chal-
lenging. As some analogies make use of words without GloVe embedding,
we ultimately end up with 367 analogies having their GloVe counterpart.

12This dataset has been kindly provided to us by Peter Turney.

23

a b n no redundancy
Common capitals athens greece 506 253

All capitals abuja nigeria 4, 524 4, 353
US cities chicago illinois 2, 467 2121
Currencies algeria dinar 866 433
Nationalities albania albanian 1, 599 820

Gender boy girl 506 253
Plurals banana bananas 1, 332 666

Base to gerund code coding 1, 056 528
Gerund to past dancing danced 1, 560 780

Base to 3rd person decrease decreases 870 435
Adj. to adverb amazing amazingly 992 496

Adj. to comparative bad worse 1, 332 666
Adj. to superlative bad worst 1, 122 561

Adj. un− prefixation acceptable unacceptable 812 406
Total 19, 544 12, 771

Table 2: Analogies categories for Google dataset

4.4. Extending datasets for classification
Due to the properties of analogical proportions reviewed in Section 2, it is easy

to rigorously extend a dataset of analogies by applying the diverse postulates. This
process is commonly known as data augmentation, since one uses properties or
structures of the specific data available to produce new ones. Although the most
common application is in image processing (where results should be invariant by
rotation, zoom, etc.), it can also be applied to analogies using their structural prop-
erties. Starting from an initial dataset of n distinct analogies, each one involving 4
different words, we end up with 8×n valid analogies which constitute the positive
examples. But in machine learning, negative examples are also needed.

By using the same initial dataset, we get invalid analogies just by permuting 2
elements of a valid analogy a : b :: c : d:

• Starting from n valid analogies and permuting the 1st and the 2nd elements
provides an invalid analogy. Then permuting 8 times this invalid analogy,
we still get 8 invalid analogies leading to 8× n invalid analogies.

• Then, applying the same process after permuting the 1st and the 3rd ele-

24

ments, leading again to 8× n invalid analogies.

We get a final extended dataset of n×24 examples, among which n×8 are positive
examples and the remaining n× 16 are negative examples.

Note that we apply central permutation in a systematic way, although we
pointed out in Subsection 2.4 that it may be debatable. However it does not
affect the results as shown in experiments; indeed we never test both (a, b, c, d)
and (a, c, b, d). Another important point to note: the negative examples are only
permutations of the positive ones. As it is highly unlikely that 4 random words
(a, b, c, d) constitute a valid analogy, we have also experimented by adding such
random negative examples. But this random extension did not bring better results
than the logical extension. This should not come as a surprise: adding negative
examples involving the same words as the positive examples is likely to be much
more informative than adding random negative examples, since the negative ex-
amples obtained by permutation are “closer” to the positive ones.

In the following, we denote a dataset of n analogies by TS and the extended
dataset of 24×n elements byExt(TS). We have diverse ways to use our extended
datasets as explained below.

4.5. Working with extended datasets for classification
From a machine learning perspective, we have to split a dataset TS into 2

subsets train(TS) and test(TS). Let us denote split(S) a function leading to
a pair of disjoint subsets train(S), test(S) from a set S. It is quite clear that
creating a pair of training and testing set, starting from an initial dataset TS can
be done in three ways:

1. Method 1: Either we start from the full dataset TS at hand, extend this set
then split into train and test subsets, i.e. we have to implement

split(Ext(TS)) = (train(Ext(TS)), test(Ext(TS)))

2. Method 2: Or we first split the dataset TS at hand into two subsets and
extend them leading to the pair

Ext(split(TS)) = (Ext(train(TS)), Ext(test(TS)))

3. Method 3: Or we split the dataset TS but extend only the training set. This
means that for classification, the test data has only positive class:

(Ext(train(TS)), test(TS))

25

Method 1 and Method 2 have exactly the same number of examples in total. This
is not the case for Method 3 as there are fewer elements to be tested. Intuitively,
the performances from these methods may be different: Method 2 and Method 3
can be considered tougher in the sense that there is no permutation of any training
analogy in the testing set: the training and testing sets are entirely disconnected.

4.6. Experimental comparison between Method 1, Method 2 and Method 3
Before launching a full batch of experiments which are very time consuming,

we have decided to investigate if one method is definitely better than the other. We
consider the Google dataset as clean and simple for analogy classification task, so
we started our experiments with it in order to get some indication about the most
relevant method to use.

Using the CNN described in Section 3, we experimented in dimension 50,
with a split ratio train/test of 0.2, i.e 20% of the dataset are retained for test-
ing, the remaining 80% used for training. The resulting accuracies and losses
(cross-entropy) are in Table 3. As we can observe, there is no clear advantage

dim 50 Method 1 Method 2 Method 3
5 epoch 93.7% (loss : 0.155) 94.2% (loss : 0.150) 93.05% (loss : 0.186)
10 epoch 95.0% (loss : 0.131) 94.9% (loss : 0.125) 92.63% (loss : 0.198)

Table 3: Comparison Method 1 - Method 2 - Method 3 with accuracy and loss

of one method over another (at least with these parameters). As a consequence
of these indicative experiments, we choose Method 2 in the following, because
we consider this method provides a clean separation between training and testing
sets (which is not the case with Method 1) and generates a bigger test set than
Method 3.

5. Experimental results for Google, BATS and DiffVec

This section is devoted to the results on the classification and regression tasks
for datasets Google, BATS and DiffVec; Section 6 covers the SAT dataset. Note
that for the DiffVec dataset, we exclude classes larger than 62,000 analogies, as
some algorithms require more resources than what we have: Classes 13 and 36
are excluded for this reason. For SVM, we also exclude class 14 and 16 as they
are too big for SVM. For LRCos, we also exclude Class 1 and Class 15, as there
are only six word pairs and LRCos requires more samples.

26

5.1. Analogy testing as a classification task
We employ the commonly used metrics for classification tasks: precision, re-

call, F1, and accuracy collected from 10-fold cross-validation. A summary of the
results showing the performance of the SVM, Random Forest, Neural Network
(NN) and CNN classifiers is given in Table 4 for Google dataset, in Table 5 for
BATS and in Table 6 for DiffVec. Complementary tables are provided in annexes.
The NN was trained using 10, 30, 100, 200, 300 and 400 epochs. We present the
results for 30 and 100 epochs just because there are no big changes for more than
100 epochs. The CNN was trained using 3, 5 and 10 epochs and we present the
results for 10 epochs.

Tables 4, 5 and 6 show that the results are uniformly very good for Google,
BATS and DiffVec, whatever the machine learning algorithm used. For Google
dataset (Table 4), the accuracies for all four classifiers are nearly 100%. Note that
simpler classifiers such as Random Forest and simple Neural Network still achieve
very high accuracy even at dimension 100, and the performance is about the same
in higher dimensions. For CNN, the accuracy increases by about 2% when the
number of dimension increases from 50 to 100. However, the gain appears to be
less significant for the higher dimensions, as the accuracy for 200 dimensions is
only 0.42% higher than 100 dimensions, and the accuracy for 300 dimensions is
actually slightly lower (0.16% lower) than 200 dimensions. It appears that using
dimension 100 is more than enough to get a clear view of the value of the 4
metrics. This is why in Tables 5 and 6 we only use at most dimension 100. For
BATS, we provide average values for the metrics per BATS class and for DiffVec,
a sample of four classes and an average of all classes.

As can be seen in Table 5, the performance of the algorithms vary with the
classes. For instance, for BATS, the accuracy of CNN decreases to 69.81% on the
Lexicographic-semantics subcategory ‘antonyms-binary’ (see Table B.14). This
should not come as a surprise since the antonym relationship is a very abstract
relation and some instances may be even debatable analogical proportions for
people, e.g., ‘before:after::dive:emerge’.

Table 6 shows the individual results of 4 diverse categories for DiffVec and
the average of 34 classes; for the complete results please see Appendix C. For the
DiffVec dataset, NN and Random Forest perform the best, followed by CNN, and
lastly SVM.

We might think of comparing these results with those of [8]. However, in [8],
analogy classification is viewed in terms of relation induction, i.e., deciding if a
pair of words (c, d) shares or does not share the same relation with a set of pairs
(ai, bi). In the case of positive answer, then for all i, ai : bi :: c : d is considered as

27

a valid analogy. But, as explained at the end of Subsection 4.1, relational induction
is quite a different task: a strict comparison would not make sense.

Note that Bouraoui et al. [8], apart from testing their own models, also tried
SVM using a linear kernel. Let us also mention the works of [59] who use a RBF-
kernel (Radial Basis Function) SVM classifiers. Our experiments show that we
only get good results with a polynomial kernel, which is more computationally
expensive compared to a linear kernel. A linear kernel accepts training and testing
data as is (without any transformation). However, a polynomial kernel has to
transform training and testing data into a higher dimension. The results can be
found in Tables 4, 5 and 6: they are quite good.

Dim Metrics SVM R Forest NN-30 epochs NN-100 epochs CNN
50 Precision 0.95 1.00 0.99 0.99 0.97

Recall 1.00 0.99 1.00 1.00 0.92
F1 0.97 1.00 1.00 0.99 0.95
Accuracy 98.2% 99.70% 99.68% 99.54% 96.53%

100 Precision 0.99 1.00 0.99 0.99 0.99
Recall 1.00 1.00 1.00 1.00 0.97
F1 0.99 1.00 1.00 1.00 0.98
Accuracy 99.56% 99.86% 99.74% 99.72% 98.56%

200 Precision 0.99 1.00 0.99 0.99 0.99
Recall 1.00 0.99 1.00 1.00 0.98
F1 1.00 1.00 1.00 1.00 0.98
Accuracy 99.74% 99.7% 99.79% 99.79% 98.98%

300 Precision 0.99 1.00 0.99 0.99 0.98
Recall 1.00 0.99 1.00 1.00 0.98
F1 1.00 1.00 1.00 1.00 0.98
Accuracy 99.71% 99.79% 99.76% 99.77% 98.82%

Table 4: Classification results for Google dataset for GloVe dimensions 50, 100, 200, 300 with
SVM polynomial kernel (3 degrees of freedom), Random Forest-100 trees, NN 30 and 100 epochs,
and CNN 10 epochs.

Ultimately, the results from Tables 4, 5 and 6 definitely outperform all the
baselines involved in our comparison and show that:

1. Learning how to classify analogy leads to much better results than modify-
ing or constraining the parallelogram formula.

2. Dimension 100 for GloVe word embedding is also more than enough to
outperform other approaches, whatever the dataset.

28

Class Metrics SVM R Forest NN-30 NN-100 CNN
E1-10 Precision 0.94 0.98 0.97 0.97 0.89

Recall 1.00 0.96 0.97 0.97 0.87
F1 0.97 0.97 0.97 0.97 0.87
Accuracy 97.90% 97.93% 97.91% 97.92% 91.61%

L1-10 Precision 0.83 0.96 0.95 0.97 0.86
Recall 1.00 0.96 0.94 0.97 0.85
F1 0.90 0.96 0.94 0.97 0.85
Accuracy 90.27% 97.22% 96.28% 97.96% 90.02%

I1-10 Precision 0.98 1.00 0.99 0.99 0.98
Recall 1.00 1.00 1.00 1.00 0.94
F1 0.99 1.00 1.00 1.00 0.96
Accuracy 99.46% 99.74% 99.53% 99.50% 97.34%

D1-10 Precision 0.86 1.00 1.00 0.99 0.92
Recall 1.00 1.00 1.00 1.00 0.94
F1 0.91 1.00 1.00 1.00 0.93
Accuracy 92.14% 100.00% 99.86% 99.84% 95.2%

Table 5: Classification results for BATS dataset for GloVe dimension 100 with SVM polynomial
kernel (3 degrees of freedom), Random Forest-100 trees, NN 30 and 100 epochs, and CNN (di-
mension 50) 5 epochs.

5.2. Analogy completion as a regression task
Here, we also used Rn word embeddings with n ∈ {50, 100, 200, 300}. The

network proposed in Section 3.4 was trained for 50 epochs 10 fold cross-validation.
As suggested in Subsection 3.1, the results for NN have to be compared with the
works of [19] for 3CosMul (code provided by [30]) and LRCos (code provided
by [15]).

The results are in Table 7 for Google dataset, Table 8 for the BATS dataset
and Table 9 for the DiffVec dataset. As seen from all three tables, NN regression
outperforms 3CosMul and LRCos by a large margin - LRCos was implemented
using leave-one-out cross validation. However, 3CosMul and LRCos have some
advantages over NN: they are much faster to execute and require less resources.
Note that the NN was trained for each category. In our previous work [31], the
NN model was trained on all categories for the Google dataset, but we feel that it
would be a fairer comparison withLRCos if the NN was trained for each category,
as the relation in LRCos was extracted for each category.

In Section 3.4, we explained that both NN and LRCos try to exploit the rela-
tionship of d with a, b and c (as 3CosMul). In LRCos, a (e.g., ’Japan’) serves as

29

Class Metrics SVM R Forest NN-30 NN-100 CNN
Object:State P 0.62 1.00 0.99 0.99 0.85
(Class 2) R 1.00 1.00 1.00 1.00 0.75

F1 0.76 1.00 0.99 0.99 0.79
Acc 79.39% 99.91% 99.56% 99.60% 87.12%

Compensatory P 0.61 0.86 0.85 0.84 0.75
Action R 0.97 0.85 0.86 0.86 0.84
(Class 6) F1 0.75 0.86 0.85 0.85 0.79

Acc 78.04% 90.62% 90.2% 90.05% 85.00%
Intended P 0.59 1.00 0.98 0.97 0.95
Action R 1.00 0.99 1.00 1.00 0.90
(Class 10) F1 0.74 0.99 0.99 0.99 0.92

Acc 76.49% 99.63% 99.19% 99.08% 94.87%
Collective P 0.99 1.00 0.99 0.99 0.76
Noun R 1.00 0.99 1.00 0.99 0.88
(Class 12) F1 0.99 0.99 0.99 0.99 0.81

Acc 99.56% 99.65% 99.59% 99.59% 86.49%
Average P 0.68 0.95 0.94 0.94 0.78
SVM 32 classes R 1.00 0.92 0.95 0.96 0.73
others 34 classes F1 0.80 0.93 0.94 0.94 0.75

Acc 79.70% 96.48% 95.89% 96.07% 83.56%

Table 6: Classification results for DiffVec dataset for GloVe dimension 100 with SVM polyno-
mial kernel (3 degrees of freedom), Random Forest-100 trees, NN 30 and 100 epochs, and CNN
(dimension 50) 5 epochs. Full results can be found in Appendix C.

a negative example and b (e.g., ’Tokyo’) serves as a positive example, and that d
should be close to c (e.g., ’France’), but the relationships perhaps may not be well
captured during the regression process. Using NN, the relationship of d with a, b
and c is captured under the form g(f1(a, b), f2(a, c)) via the NN structure. This
may explain the better results obtained with NN.

Tables 7, 8 and 9 also demonstrate that the accuracies of both 3CosMul and
LRCos increase as the dimension of the embedding increases. Interestingly, this
is not the case for NN: its accuracies are less dependent on the dimension - only in
the DiffVec dataset that the average accuracy increases by 3.85% from dimension
50 to dimension 100, and the increase is insignificant (only 0.02%) from dimen-
sion 100 to dimension 200. This appears to support the argument put forward by
Drodz et al. [15] that a better method can overcome the shortcoming of an embed-
ding. Up to a point, this argument is acceptable, when the relationships are simple,

30

such as those presented in the Google, BATS and DiffVec datasets. Nevertheless,
when the relationships are very complex, such as those in SAT, then it would be
difficult to capture those relationships using NN as discussed in Section 6.

NN Regression 3CosMul LRCos
Dim 50 100 200 300 50 100 200 300 50 100 200 300

Average 97.31% 97.49% 97.49% 97.48% 34.89% 56.64% 61.84% 64.81 46.55% 63.85% 69.12% 70.24%
Com capitals 100.00% 100.00% 100.00% 100.00% 63.8% 80.0% 86.9% 88.9% 91.30% 95.65% 95.65% 95.60%

All capitals 99.75% 100.00% 100.00% 100.00% 50.0% 77.0% 87.5% 90.1% 85.34% 95.69% 99.14% 98.28%
US cities 67.56% 69.37% 69.10% 69.16% 6.9% 17.0% 29.8% 36.5% 26.92% 38.46% 62.82% 62.82%

Currencies 94.97% 95.47% 95.69% 95.58% 5.0% 15.0% 22.5% 24.4% 16.67% 23.33% 26.67% 26.67%
Nationalities 100.00% 100.00% 100.00% 100.00% 84.7% 89.1% 94.1% 94.6% 85.37% 90.24% 92.68% 92.68%

Gender 100.00% 100.00% 100.00% 100.00% 61.5% 79.4% 86.6% 88.6% 4.36% 5.45% 6.91% 6.55%
Plurals 100.00% 100.00% 100.00% 100.00% 41.4% 71.9% 79.8% 83.3% 67.56% 75.68% 86.49% 83.78%

Base-gerund 100.00% 100.00% 100.00% 100.00% 35.2% 65.6% 68.1% 71.0% 36.36% 81.82% 78.79% 81.82%
Gerund-past 100.00% 100.00% 100.00% 100.00% 27.3% 53.1% 59.6% 62.5% 37.50% 75.00% 82.50% 85.00 %
Base to 3rd 100.00% 100.00% 100.00% 100.00% 28.8% 59.1% 64.9% 68.4% 43.33% 66.67% 80.00% 80.00%

Adj-adverb 100.00% 100.00% 100.00% 100.00% 10.8% 22.0% 22.9% 23.4% 31.25% 50.00% 50.00% 50.00%
Adj-Comprtv 100.00% 100.00% 100.00% 100.00% 48.2% 68.5% 74.1% 76.5% 59.46% 81.00% 89.19% 89.19%
Adj-Superltv 100.00% 100.00% 100.00% 100.00% 18.6% 50.1% 67.5% 73.7% 55.88% 73.53% 85.29% 85.29%
Adj un-prefix 100.00% 100.00% 100.00% 100.00% 6.2% 17.1% 21.5% 25.4% 10.34% 41.38% 44.83% 44.83%

Table 7: Accuracy of regression (analogy completion task) using NN, 3CosMul and LRCos for
Google dataset. The best results are in bold (unless the accuracy is 100%).

NN Regression 3CosMul LRCos
Dim 50 100 200 300 50 100 200 300 50 100 200 300

E1-10 74.71% 75.74% 75.94% 75.95% 8.68% 14.64% 18.54% 20.35% 24.69% 29.30% 37.72% 37.31%
L1-10 90.11% 90.77% 90.82% 90.68% 1.70% 4.47% 5.9% 6.3% 5.63% 10.86% 11.67% 13.28%
I1-10 99.99% 100.00% 100.00% 100.00% 32.41% 55.31% 60.20% 63.11% 48.09% 69.69% 73.53% 73.73%

D1-10 100.00% 100.00% 100.00% 100.00% 3.25% 8.37% 10.47% 11.92% 15.96% 26.76% 27.59% 27.40%

Table 8: Accuracy of regression (analogy completion task) using NN, 3CosMul and LRCos
for the BATS dataset. This dataset has four categories: E-Encyclopedia, L-Lexicography, I-
Inflectional Morphology, D-Derivational Morphology. Each category has ten subcategories. The
table above shows the average result of each category. The best results are in bold (unless the
accuracy is 100%).

NN Regression 3CosMul LRCos
Dim 50 100 200 300 50 100 200 300 50 100 200 300

Object:State (Class 2) 97.68% 98.08% 97.45% 97.22% 0.40% 0.52% 0.29% 0.34% 0.00% 6.67% 3.33% 3.33%
Compensatory 87.70% 88.50% 88.19% 88.12% 0.00% 0.20% 0.26% 0.26% 0.00% 0.00% 3.57% 3.57%

Action (Class 6)
Intended 93.62% 92.37% 91.64% 91.51% 0.39% 2.50% 3.82% 5.00% 0.00% 15.00% 25.00% 15.00%

Action (Class 10)
Collective Noun 72.48% 79.99% 80.13% 80.00% 0.03% 0.26% 0.39% 0.56% 3.97% 6.35% 6.35% 6.35%

(Class 12)
Average 89.73% 93.58% 93.60% 93.40% 4.89% 8.80% 9.69% 10.21% 8.91% 16.22% 17.63% 17.84%

Table 9: The accuracy of regression (analogy completion task) using NN, 3CosMul and LRCos
for the DiffVec dataset for four sample classes and the average of 34 classes for NN and 3CosMul
and 32 classes for LRCos. The best results are in bold.

31

6. Semantic analogies : SAT dataset

As we have previously seen, the machine learning approaches are quite suc-
cessful in recognizing word analogies from Google, BATS and DiffVec datasets.
Nevertheless, all the datasets are mainly made of morpho-syntactic analogies, not
really semantic analogies. We are not in a position to provide a clear and con-
cise definition of semantic analogies but everybody understands the difference be-
tween ‘man:men::woman:women’ (morpho-syntactic) and ‘ostrich:bird::lion:cat’
(semantic, extracted from SAT). SAT is generally considered as a well-accepted
set of semantic analogies: this is the set of analogies used in the SAT college
entrance test. It is a set of 374 multiple-choice questions where a pair of words
(a : b) has five options (c : d) but only one option makes a valid analogy with the
first pair. So we have 374 × 5 examples among which only 374 of the examples
are valid semantic analogies. Thus, SAT provides both positive and negative ex-
amples - which is not the case for Google and BATS datasets where we only have
positive examples, at least initially. Below is an example from the SAT dataset:

1. remuneration : labor :: trophy : victory (the valid analogy)
2. remuneration : labor :: gratuity : bonus (the 4 other candidates)
3. remuneration : labor :: apology : regret

4. remuneration : labor :: pledge : donation

5. remuneration : labor :: debt : loan

It appears that only 367 examples have a proper GloVe embedding: so we focus
on this subset.

With his SuperSim (for ‘supervised similarity’) approach, Turney [56] achieves
a score of 54.8% of correct answers for the classification task, which reveals the
inherent difficulty of this dataset. In order to work with a balanced dataset, Tur-
ney selectively increases the number of positive examples by applying symmetry
postulate and internal reversal property (see Section 2)13. Apart from classifying
analogies, SuperSim can also perform other tasks.

6.1. Classification on SAT
For classification, we have chosen the following option: we consider only the

367 valid analogies, and we apply our dataset extension getting 367 × 8 positive
examples and 367×16 negative examples (obtained by permutation). Then we use

13Applying central permutation would lead to too many positive examples.

32

Method 2 and 10-fold cross-validation to train and test as usual. In that context,
we have a dataset of total size 367×24 = 8, 808 (positive and negative) examples.

As we have a ratio of 1 valid analogy for 2 non-valid ones, a baseline algorithm
classifying all quadruples a : b :: c : d as non-valid would have 66% accuracy.
The results are in Table 10. We observe that the best performer is CNN with
an accuracy larger than 77% for 10 epochs whatever the GloVe dimension. This
could indicate that CNN is able to capture more complex relationships between
words than a simple NN. This is obviously the case when dealing with images
instead of words!

Obviously, as expected, we are less accurate than with Google, BATS and
DiffVec datasets. Nevertheless, we are better than what has been done in [56],
where accuracy is in the range of 55%.

Dim Metrics SVM R Forest NN-30 NN-100 CNN
SAT 50 Precision 0.37 0.25 0.45 0.45 0.69
#TS = 8, 808 Recall 0.99 0.00 0.45 0.37 0.64

F1 0.54 0.00 0.45 0.40 0.66
Accuracy 44.21% 66.53% 63.16% 63.93% 78.33%

100 Precision 0.39 0.55 0.44 0.44 0.69
Recall 0.98 0.01 0.46 0.44 0.60
F1 0.55 0.01 0.45 0.44 0.62
Accuracy 46.94% 66.82% 62.57% 62.90% 77.63%

200 Precision 0.62 0.44 0.44 0.45 0.77
Recall 0.38 0.00 0.50 0.48 0.51
F1 0.47 0.01 0.47 0.46 0.58
Accuracy 71.39% 66.67% 62.05% 63.05% 77.62%

300 Precision 0.41 0.49 0.45 0.45 0.75
Recall 0.04 0.00 0.50 0.47 0.59
F1 0.06 0.01 0.48 0.46 0.62
Accuracy 67.32% 66.67% 63.17% 63.36% 78.61%

Table 10: Classification results for SAT dataset using SVM polynomial kernel (3 degrees of free-
dom), Random Forest-100 trees, NN 30 and 100 epochs and CNN 10 epochs.

6.2. Completion on SAT
The completion task on SAT was conducted on the 367 examples including

only the 367 valid analogies, without taking into account the negative exam-
ples given by SAT. We run the three analogy completion algorithms (3CosMul,

33

LRCos14 and NN), and they all perform poorly.
This leads us to concentrate on a more modest task where we take advantage

of the negative examples provided in SAT. We proceed as follows. When we have
a complete example a : b : c1 : d1 (valid analogy) and four incorrect analogies,

a : b : c2 : d2, a : b : c3 : d3, a : b : c4 : d4, a : b : c5 : d5,

Then, we compute the five cosine similarities of d with d1, ..., d5 so, it yields

sim(d, d1), sim(d, d2), sim(d, d3), sim(d, d4), sim(d, d5).

Note that we have preferred to use d2, ..., d5 from SAT instead of randomly chosen
words in the vocabulary. We used the three methods to find the solution d. If
sim(d, d1) is the largest one, this is a success for the method, a failure otherwise.
Then the accuracy is computed with these notions of success/failure. This allows
us to compare the three methods 3CosMul, LRCos and NN on this new basis.
Results are given in Table 11.

Dim 3CosMul LRCos NN
SAT 50 53.51% 48.92% 35.78%

100 59.73% 54.32% 33.99%
200 63.85% 60.00% 32.64%
300 65.27% 59.73% 36.22%

Table 11: Accuracy of regression (analogy completion task) using 3CosMul, LRCos and NN (50
epochs) on SAT. The accuracies for 3CosMul and LRCos are comparable, and the accuracies
for NN are the lowest.

The results for 3CosMul and LRCos are comparable, with 3CosMul always
slightly better than LRCos. The machine learning approach NN is no longer suc-
cessful here. This might be due to the very limited number of examples: machine
learning methods such as NN usually need a large amount of data to be successful.

7. Related work

First of all, there are slightly different views of what is an analogical propor-
tion between words. Following the postulates recalled in Section 2, it is legit-
imate to expect that central permutation preserves the quaternary analogy rela-
tion. When word analogy is viewed as a byproduct of binary relation induction,

14Mind that LRCos uses negative examples but they are not the SAT negative examples, but
rather words that are different from the target class.

34

it is clear that central permutation is not a concern. However, the parallelogram
paradigm implicitly assumes central permutation (a− b = c− d) is equivalent to
a− c = b− d). Nevertheless, in the context of word analogy, central permutation
does not always lead to a cognitively acceptable analogical proportion. This is
especially the case when a, c on the one hand and b, d on the other hand different
categories, as already pointed out in subsection 2.4.

In the computational linguistics literature, the word analogy trend assumes
that the prediction of a new word pair in relation induction always leads to a word
analogy with any other pair sharing the same relation. Following this view, works
such that [39, 20, 49] extract word pairs representative of semantic relations from
a large corpora, which then serve as input to learning models in order to predict
new instances of the considered relation using the given corpus. In the same spirit,
we can also cite [61, 60] for the recognition of lexical semantic relations. Another
option is explored in [23] where relation vectors that encode the relationship be-
tween two words are directly embedded and learnt from co-occurrence statistics
(already used in [1]); the approach is experimented on relational induction among
other tasks. However, these authors do not primarily focus on analogy even if
classification and/or completion of analogy can be used to test some models.

Besides, we have to stress the fact that, apart from Turney’s works [55], we
are unaware of recent works completely departing from the vector offset methods
to detect analogy. As we have seen in subsection 3.1:

• The analogy models from [38, 30, 19] were developed by tuning the stan-
dard additive formula a − b = c − d, leading to a much more successful
formula (3CosMul in Equation 1).

• The analogy models from [15, 18] or the translation model of [8] introduce
a constraint on the candidate solutions. It appears that the translation model
outperforms all other methods they compared with.

• Finally, the regression model from [8] slightly relaxes the assumption but
still assuming some kind of simple underlying relation. It can outperform
the translation model on some specific categories.

Nevertheless, the problem of recognizing word analogies has been attempted well
before the emergence of effective word embedding systems: we can cite [48, 53,
58, 55, 54] for instance. The datasets were generally limited in terms of size
with regard to the current standard. For instance [55] uses SAT corpus: the
highest accuracy on this set is 56.1% knowing that a random guess yields an

35

accuracy of 20% and senior high school students get 57%. These results are
quite interesting as the dataset mainly consists of semantic analogies like ma-
son:stone::carpenter:wood. More recently, researchers were more interested in
working on the analogy completion problem, as with word embedding techniques,
numerical tools became widely available. Instead of dealing with discrete space
of words, they deal with continuous space language models.

From another perspective, the BART (standing for Bayesian Analogy with Re-
lational Transformations) model described in [34], is also based on neural-network
but more dedicated to relation induction i.e. finding pairs (c, d) when a pair (a, b)
is given.

From another viewpoint, some researchers have focused on the task of trans-
forming a query image according to an example pair of related images [47]. They
have taken their inspiration from language modeling techniques. They focus on
generating an appropriate image to make a valid analogy between images. Their
approach is a two-step learning process not far from what we did:

• firstly, learn a deep encoder function f from Rd to Rk that maps images to
an embedding space suitable for reasoning about analogies. In some sense,
it is the counterpart of word2vec or GloVe for images. In the target space,
they solve the analogical equation using f(b)− f(a) + f(c)

• secondly, learn a deep decoder function g from Rk to Rd to ultimately solve
the equation a : b :: c : x with g(f(b)− f(a) + f(c)).

The authors then apply their model to diverse image-related tasks, and finally to
the task of analogy making on 3D car models. But, they also depart from the
parallelogram viewpoint by learning from the training set a more sophisticated
relation linking a, b, c to the solution d. It appears that the model can perform 3D
pose transfer and rotation only by analogy. Apart from that, comparing mean-
squared prediction error, their final model performs much better than the additive
option, even when this additive option is modified according to the multiplica-
tive option of [30]. We could understand this as a confirmation that it is more
effective to learn the relation between (a, b, c) and the solution d than to rely on a
parallelogram view.

BERT (for Bidirectional Encoder Representations from Transformers) devel-
oped by Google [14] is a recent option as a language representation model. It
seems that BERT model can be fine-tuned for a wide range of tasks without huge
architectural modifications. At this stage, we have not yet investigated the use of

36

BERT as a tool to classify or to solve analogical equations, but obviously it is a
track worth of interest, and we can take inspiration from [24, 7].

8. Conclusion

In this paper, we investigate the logical axioms of analogical proportions to de-
rive new properties rarely used in practice. This modeling highlights the fact that
analogy is as much a matter of dissimilarity as a matter of similarity. When we
refer to numbers or vectors instead of Boolean values, an analogy is often viewed
as a−b = c−d (arithmetic analogy) and may be unable to capture the complexity
of similarity/dissimilarity. To try to bridge the gap between the Boolean view and
the numerical one, we focus on natural language analogies using word embedding
techniques. This leads us to suggest radically new approaches not only for classi-
fying whether a quadruple of words is an analogy but also for solving analogical
equations.

Previous attempts rely on predefined formulas: this can be restrictive as it
assumes that we have a clear understanding of what an analogy is in natural lan-
guage. In fact, we have no such understanding. Our methodology is quite differ-
ent: it takes advantage of the theoretical analysis of the structural properties of
analogical proportions for augmenting the training set and of recent word embed-
ding systems in order to learn the unknown relationship amongst the words in an
analogy. Embedding the words using GloVe into a multi-dimensional vector space
Rn, the matrix constituted of 4 vectors can be viewed as an image of dimension
n×4. From a machine learning perspective, the permutation properties of analog-
ical proportion lead to an increase of the dataset size by 8 for positive examples
and by 16 for negative examples. Using analogies from Google, BATS and Dif-
fVec datasets, we have implemented several machine learning classifiers (SVM,
Random Forest, NN and CNN) with an average (on all categories) accuracy higher
than 96% for Google, higher than 90% for BATS and higher than 79% for DiffVec
whatever the tested machine learning methods (note that if we ignore SVM and
CNN on DiffVec, the average accuracy is higher that 95%). However, the accura-
cies on the SAT dataset were lower, but it is still up to 77% for the most successful
method, namely CNN. SAT is indeed much more “semantic” than Google, BATS
and DiffVec, which probably makes it more challenging.

Regarding the analogy completion task, we also depart from the classical
views derived from the arithmetic analogy using a formula. Instead, we try to
learn such a definition via machine learning techniques.

37

Experiment results show that the machine learning methods outperform the
formula-inspired methods for classification task (all four datasets) and analogy
completion task (three out of four datasets). Machine learning methods might be
useful for solving more semantic analogies.

Due to the success of the machine learning approaches with GloVe embed-
ding, one could ask what we could achieve with a complete end-to-end learning
approach, where the initial embedding is built via a neural network. This is an
open question at this stage and in the future, it is worth to conduct a deeper inves-
tigation.

Another line of future investigation would be to couple maybe the approaches
proposed with works trying to recognize the role of entities or the conceptual
space they belong to (e.g., [6]) in the analogical proportions. This might be of
particular interest for dealing with ‘semantic’ proportions.

Still we have to acknowledge the fact that while machine learning techniques
may be very powerful tools for dealing with analogy classification and analogy
completion tasks, this does not provide any contribution on what is exactly an
analogy between words. It is likely that a strict judgement for deciding if an ana-
logical proportion is valid or not, or if is a matter of degree (or of context), would
require more high level information than the one provided by embeddings.

Acknowledgements The authors are deeply indebted to the two reviewers
who provided many useful suggestions and references. The paper has substan-
tially benefited from their feedback. Thanks are also due to Peter Turney for
kindly providing the SAT dataset.

References

[1] S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski. A latent variable model ap-
proach to PMI-based word embeddings. Trans. Assoc. Comput. Linguistics,
4:385–399, 2016.

[2] N. Barbot, L. Miclet, and H. Prade. Analogy between concepts. Artif. Intell.,
275:487–539, 2019.

[3] M. Bayoudh, H. Prade, and G. Richard. Evaluation of analogical propor-
tions through Kolmogorov complexity. Knowledge-Based Systems, 29:20–
30, 2012.

38

[4] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko.
Translating embeddings for modeling multi-relational data. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems 26, pages 2787–
2795. Curran Associates, Inc., 2013.

[5] M. Bounhas, H. Prade, and G. Richard. Analogy-based classifiers for nomi-
nal or numerical data. Int. J. Approx. Reasoning, 91:36–55, 2017.

[6] Z. Bouraoui, J. Camacho-Collados, L. Espinosa-Anke, and S. Schockaert.
Modelling semantic categories using conceptual neighborhood. In Proc.
34th AAAI Conf. on Artificial Intelligence, AAAI’20, New York, Feb. 7-12,
2020, pages 7448–7455. AAAI Press, 2020.

[7] Z. Bouraoui, J. Camacho-Collados, and S. Schockaert. Inducing relational
knowledge from BERT. In Proc. 34th AAAI Conf. on Artificial Intelligence
(AAAI’ 20, New York, February 7-12, pages 7456–7463. AAAI Press, 2020.

[8] Z. Bouraoui, S. Jameel, and S. Schockaert. Relation induction in word em-
beddings revisited. In E. M. Bender, L. Derczynski, and P. Isabelle, editors,
Proc. 27th Int. Conf. on Computational Linguistics, COLING’18, Santa Fe,
New Mexico, Aug. 20-26, 2018, pages 1627–1637. Association for Compu-
tational Linguistics, 2018.

[9] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[10] C.Allen and T. M. Hospedales. Analogies explained: Towards understand-
ing word embeddings. In K. Chaudhuri and R. Salakhutdinov, editors, Proc.
36th Int. Conf. on Machine Learning, ICML’19, 9-15 June , Long Beach,
Ca., volume 97, pages 223–231. PMLR, 2019.

[11] D. Chen, J. C. Peterson, and T. L. Griffiths. Evaluating vector-space models
of analogy. CoRR, abs/1705.04416, 2017.

[12] W. Correa Beltran, H. Prade, and G. Richard. Constructive solving
of Raven’s IQ tests with analogical proportions. Int. J. Intell. Syst.,
31(11):1072–1103, 2016.

[13] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

39

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[15] A. Drozd, A. Gladkova, and S. Matsuoka. Word embeddings, analogies,
and machine learning: Beyond king - man + woman = queen. In Proc.
COLING’16, 26th Int. Conf. on Comput. Linguistics: Tech. Papers, pages
3519–3530. The COLING 2016 Organizing Committee, 2016.

[16] D. Dubois, H. Prade, and G. Richard. Multiple-valued extensions of analog-
ical proportions. Fuzzy Sets and Systems, 292:193–202, 2016.

[17] D. Gentner. The mechanisms of analogical learning. In S. Vosniadou and
A. Ortony, editors, Similarity and Analogical Reasoning, pages 197–241.
Cambridge University Press, New York, 1989.

[18] A. Gladkova, A. Drozd, and S. Matsuoka. Analogy-based detection of mor-
phological and semantic relations with word embeddings: What works and
what doesn’t. In Proc. NAACL-HLT SRW, pages 47–54, San Diego, Ca.,
June 12-17, 2016, 2016. ACL.

[19] Y. Goldberg and O. Levy. word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. CoRR, abs/1402.3722, 2014.

[20] I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. Ó Séaghdha, S. Padó,
M. Pennacchiotti, L. Romano, and S. Szpakowicz. Semeval-2010 task 8:
Multi-way classification of semantic relations between pairs of nominals. In
K. Erk and C. Strapparava, editors, Proc. 5th Int. Workshop on Semantic
Evaluation, SemEval@ACL 2010, Uppsala, July 15-16, 2010, pages 33–38.
The Association for Computer Linguistics, 2010.

[21] M. Hesse. On defining analogy. Proceedings of the Aristotelian Society,
60:79–100, 1959.

[22] D. Hofstadter and M. Mitchell. The Copycat project: A model
of mental fluidity and analogy-making. In D. Hofstadter and
The Fluid Analogies Research Group, editors, Fluid Concepts and Creative
Analogies: Computer Models of the Fundamental Mechanisms of Thought,
pages 205–267, New York, NY, 1995. Basic Books, Inc.

40

[23] S. Jameel, Z. Bouraoui, and S. Schockaert. Unsupervised learning of distri-
butional relation vectors. In I. Gurevych and Y. Miyao, editors, Proc. 56th
Annual Meeting of the Assoc. for Comput. Linguistics, ACL’18, Melbourne,
July 15-20, Vol. 1: Long Papers, pages 23–33, 2018.

[24] G. Jawahar, B. Sagot, and D. Seddah. What does BERT learn about the
structure of language? In A. Korhonen, D. R. Traum, and Ll. Màrquez,
editors, Proc. 57th Conf. of the Assoc. for Comput. Linguistics, ACL 2019,
Florence, July 28- Aug. 2, 2019, Vol. 1: Long Papers, pages 3651–3657.
Association for Computational Linguistics, 2019.

[25] M. Joshi, E. Choi, O. Levy, D. S. Weld, and L. Zettlemoyer. pair2vec:
Compositional word-pair embeddings for cross-sentence inference. In
J. Burstein, Ch. Doran, and T. Solorio, editors, Proc. 2019 Conf. of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, June 2-7,
2019, Volume 1 (Long and Short Papers), pages 3597–3608. Association for
Computational Linguistics, 2019.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014.

[27] Y. Lepage. Analogy and formal languages. Electr. Notes Theor. Comput.
Sci., 53, 2001.

[28] Y. Lepage, J. Migeot, and E. Guillerm. A measure of the number of true
analogies between chunks in Japanese. In Z. Vetulani et al., editor, Human
Language Technology. Challenges of the Information Society, LNCS 5603,
154-164. Springer, 2009.

[29] O. Levy and Y. Goldberg. Dependency-based word embeddings. In Proc.
52nd Annual Meeting of Ass. Comp. Ling. (Vol 2: Short Papers), pages
302–308, 2014.

[30] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity
with lessons learned from word embeddings. Trans. Ass. for Comput. Ling.,
3:211–225, 2015.

[31] S. Lim, H. Prade, and G. Richard. Solving word analogies: A machine
learning perspective. In G. Kern-Isberner and Z. Ognjanovic, editors, Proc.
15th Europ. Conf. on Symbolic and Quantitative Approaches to Reasoning

41

with Uncertainty (ECSQARU’19), Belgrade, Sept. 18-20, volume 11726 of
LNCS, pages 238–250. Springer, 2019.

[32] Tal Linzen. Issues in evaluating semantic spaces using word analogies.
CoRR, abs/1606.07736, 2016.

[33] A. Lovett, K. Forbus, and J. Usher. A structure-mapping model of Raven’s
progressive matrices. In Proc. 32nd Annual Conf. of the Cognitive Science
Soc., Portland, OR, 2010.

[34] H. Lu, Y Wu, and K.H. Holyoak. Emergence of analogy from relation learn-
ing. In Proc. of the National Academy of Sciences, volume 116, pages 4176–
4181, 2019.

[35] L. Miclet, S. Bayoudh, and A. Delhay. Analogical dissimilarity: Definition,
algorithms and two experiments in machine learning. JAIR, 32:793–824,
2008.

[36] T. Mikolov, K. Chen, G. S Corrado, and J. Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013.

[37] T. Mikolov, I. Sutskever, K. Chen, G. S Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In C. J.
C. Burges et al., editor, Advances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates Inc., 2013.

[38] T. Mikolov, W. Yih, and G. Zweig. Linguistic regularities in continuous
space word representations. In Proc. Conf. of North Amer. Chap. of Ass. for
Comp. Ling.: Human Language Technologies, pages 746–751, 2013.

[39] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation
extraction without labeled data. In K.-Y. Su, J. Su, and J. Wiebe, editors,
ACL 2009, Proc. of the 47th Annual Meeting of the Assoc. for Comput.
Linguistics and the 4th Int. Joint Conf. on Natural Language Processing of
the AFNLP, 2-7 Aug., Singapore, pages 1003–1011. The Association for
Computer Linguistics, 2009.

[40] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press,
2018.

42

[41] M. Nissim, R. van Noord, and R. van der Goot. Fair is better than sen-
sational: Man is to doctor as woman is to doctor. Comput. Linguistics,
46(2):487–497, 2020.

[42] A. Paccanaro and G. E. Hinton. Learning distributed representations of con-
cepts using linear relational embedding. IEEE Trans. on Knowl. and Data
Eng., 13(2):232–244, March 2001.

[43] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word
representation. In Proc. Conf. on Empirical Methods in Natural Language
Processing (EMNLP), volume 14, pages 1532–1543. Association for Com-
putational Linguistics, 01 2014.

[44] J. Pennington, R. Socher, and Ch. D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014.

[45] H. Prade and G. Richard. From analogical proportion to logical proportions.
Logica Univers., 7:441–505, 2013.

[46] N. Rao, Ch. Cox, R. Nowak, and T. Rogers. Sparse overlapping sets lasso
for multitask learning and its application to fMRI analysis. In Ch. J. C.
Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 26: Proc. 27th Annual Conf.
on Neural Information Processing Systems, Dec. 5-8, Lake Tahoe, Nevada,
pages 2202–2210, 2013.

[47] S. E. Reed, Y. Zhang, Y.t. Zhang, and H.l. Lee. Deep visual analogy-making.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems 28, pages 1252–
1260. Curran Associates, Inc., 2015.

[48] W. R. Reitman. Cognition and thought. an information processing approach.
Psych. in the Schools, 3(2), 1965.

[49] S. Riedel, L. Yao, and A. McCallum. Modeling relations and their mentions
without labeled text. In J. L. Balcázar, F. Bonchi, A. Gionis, and M. Se-
bag, editors, Machine Learning and Knowledge Discovery in Databases,
European Conference, ECML PKDD’10, Barcelona, Sept. 20-24, Proc., Part
III, volume 6323 of LNCS, pages 148–163. Springer, 2010.

43

[50] Richard Robinson. Plato’s consciousness of fallacy. Mind, 51(202):97–114,
1942.

[51] D. E. Rumelhart and A. A. Abrahamson. A model for analogical reasoning.
Cognitive Psychol., 5:1–28, 1973.

[52] R. Tibshirani. The lasso method for variable selection in the Cox model.
Statistics in Medicine, 16(4):385–395, 1997.

[53] P. D. Turney. Similarity of semantic relations. Computational Linguistics,
32(3):379–416, 2006.

[54] P. D. Turney. The latent relation mapping engine: algorithm and experi-
ments. JAIR, 33:615–655, 2008.

[55] P. D. Turney. A uniform approach to analogies, synonyms, antonyms, and
associations. In Proc. 22nd Int. Conf. on Computational Linguistics - Vol. 1
(COLING ’08), pages 905–912. Association for Computational Linguistics,
2008.

[56] P. D. Turney. Distributional semantics beyond words: Supervised learning of
analogy and paraphrase. Transactions of the Association for Computational
Linguistics, 1:353–366, 2013.

[57] P. D. Turney, M. L. Littman, J. Bigham, and V. Shnayder. Combining inde-
pendent modules to solve multiple-choice synonym and analogy problems.
CoRR, cs.CL/0309035, 2003.

[58] T. Veale. Re-representation and creative analogy: A lexico-semantic per-
spective. New Generation Computing, 24(3):223–240, 2006.

[59] E. Vylomova, L. Rimell, T. Cohn, and T. Baldwin. Take and took, gaggle
and goose, book and read: Evaluating the utility of vector differences for
lexical relation learning. In Proc. 54th Annual Meeting of the Assoc. for
Comput. Linguistics (Vol. 1: Long Papers), pages 1671–1682, Berlin, 2016.
Association for Computational Linguistics.

[60] K. Washio and T. Kato. Filling missing paths: Modeling co-occurrences of
word pairs and dependency paths for recognizing lexical semantic relations.
In M. A. Walker, H. Ji, and A. Stent, editors, Proc. 2018 Conf. of the North
American Chapter of the Association for Computational Linguistics: Human

44

Language Technologies, NAACL-HLT 2018, New Orleans, June 1-6, 2018,
Vol. 1 (Long Papers), pages 1123–1133. Association for Computational Lin-
guistics, 2018.

[61] K. Washio and T. Kato. Neural latent relational analysis to capture lexical se-
mantic relations in a vector space. In E. Riloff, D. Chiang, J. Hockenmaier,
and J. Tsujii, editors, Proc. 2018 Conf. on Empirical Methods in Natural
Language Processing, Brussels, Oct. 31 - Nov. 4, pages 594–600. Associa-
tion for Computational Linguistics, 2018.

45

Appendix A. Detailed results on Google dataset for classification

Average accuracy in %
Class name #epochs 50 100 200 300

Common capitals (1) 3 88.32% 91.62% 87.65% 85.97%
5 94.66% 97.41% 95.28% 93.93%

10 95.69% 98.41% 99.58% 93.93%
All capitals (2) 3 99.86% 99.97% 99.98% 99.98%

5 99.91% 99.97% 99.98% 99.99%
10 99.92% 99.99% 99.99% 100.0%

Currencies (4) 3 93.94% 98.06% 99.41% 99.83%
5 95.45% 98.57% 99.86% 99.80%

10 96.93% 99.43% 99.93% 99.97%
US cities (3) 3 83.56% 83.60% 80.69% 87.38%

5 88.29% 91.17% 93.08% 93.47%
10 94.61% 97.17% 99.00 % 99.20%

Gender (11) 3 98.40% 99.07% 99.69% 99.44%
5 99.78% 99.94% 100.0% 99.99%

10 99.83% 99.93% 99.96% 99.97%
Adj to adverb (5) 3 80.42% 82.26% 82.41% 85.49%

5 85.42% 86.21% 91.11% 90.64%
10 94.13% 94.92% 97.84% 97.80%

Opposite (13) 3 89.18% 84.80% 78.93% 80.99%
5 96.50% 95.23% 90.39% 91.45%

10 99.33% 99.60% 97.44% 98.54%
Comparative(10) 3 79.74% 83.55% 81.20% 78.01%

5 80.32% 92.17% 90.84% 91.33%
10 91.16% 98.34% 98.34% 97.94%

Superlative (12) 3 79.34% 83.96% 87.12% 88.48%
5 84.34% 96.02% 97.48% 98.02%

10 98.88% 98.88% 98.97% 99.52%
Base to gerund (14) 3 87.04% 90.46% 89.32% 89.08%

5 91.22% 91.36% 91.48% 96.29%
10 95.68% 97.45% 98.02% 99.21%

Nationalities (6) 3 85.00% 82.45% 78.64% 82.68%
5 92.20% 90.84% 90.23% 87.31%

10 96.11% 98.48% 97.30% 98.35%
Gerund to past (8) 3 91.02% 96.21% 97.56% 97.76%

5 98.16% 98.52% 99.61% 99.73%
10 99.35% 99.75% 99.78% 99.81%

Plurals (9) 3 96.94% 98.37% 98.01% 99.16%
5 98.64% 99.49% 99.62% 99.67%

10 99.54% 99.55% 99.71% 99.72%
Base to 3rd person (7) 3 80.49% 79.27% 81.6% 77.63%

5 87.31% 87.54% 85.21% 89.51%
10 95.05% 97.65% 97.45% 98.45%

Full Google (15) 3 96.01% 97.79% 97.85% 97.93%
5 96.01% 98.07% 98.65% 98.84%

10 96.49% 98.45% 98.96% 98.88%

Table A.12: Classification results for CNN on Google categories per GloVe dimension.

46

Appendix B. Detailed results on BATS dataset for classification

Taking into account our experiments with Google dataset, we have experimented
per BATS subcategory (40 subcategories in total) with the following parameters:
• CNN classifier only (as CNN is the most successful on Google)
• Glove dimension 50 (as it is enough for the CNN to get good results on

Google)
• Number of epochs 5 (as it is still enough for the CNN to get good results on

Google).
As we know, the most challenging category is L, with subcategory L10 very tough
to capture. But the CNN provides acceptable results. On subcategory L10, CNN
still leads to an accuracy close to 70%.

Class name Metrics Values
I01 [noun - plural-reg] Precision 0.99

Recall 0.93
F1 0.96

Accuracy 97.39% (+/- 0.75%)
I02 [noun - plural-irreg] Precision 0.90

Recall 0.85
F1 0.88

Accuracy 91.97% (+/- 1.46%)
I03 [adj - comparative] Precision 0.99

Recall 0.99
F1 0.99

Accuracy 99.26% (+/- 0.41%)
I04 [adj - superlative] Precision 0.99

Recall 1.00
F1 0.99

Accuracy 99.53% (+/- 0.25%)
I05 [verb-inf - 3pSg] Precision 1.00

Recall 1.00
F1 1.00

Accuracy 99.88% (+/- 0.17%)
I06 [verb-inf - Ving] Precision 1.00

Recall 0.90
F1 0.95

Accuracy 96.80% (+/- 2.34%)
I07 [verb-inf - Ved] Precision 1.00

Recall 0.99
F1 0.99

Accuracy 99.60% (+/- 0.22%)
I08 [verb-Ving - 3pSg] Precision 0.97

Recall 0.92
F1 0.94

Accuracy 96.41% (+/- 0.84%)
I09 [verb-Ving - Ved] Precision 0.96

Recall 0.84
F1 0.90

Accuracy 93.65% (+/- 2.14%)
I10 [verb-3pSg - Ved] Precision 1.00

Recall 0.97
F1 0.98

Accuracy 98.93% (+/- 0.40%)

Class name Metrics Values
D01 [noun+less-reg] Precision 0.82

Recall 0.94
F1 0.87

Accuracy 90.69% (+/- 2.54%)
D02 [un+adj-reg] Precision 0.81

Recall 0.79
F1 0.80

Accuracy 86.78% (+/- 1.99%)
D03 [adj+ly-reg] Precision 0.98

Recall 0.96
F1 0.97

Accuracy 97.80% (+/- 0.50%)
D04 [over+adj-reg] Precision 0.94

Recall 0.94
F1 0.94

Accuracy 96.17% (+/- 0.51%)
D05 [adj+ness-reg] Precision 0.94

Recall 0.96
F1 0.95

Accuracy 96.56% (+/- 1.29%)
D06 [re+verb-reg] Precision 0.93

Recall 0.89
F1 0.91

Accuracy 94.01% (+/- 0.64%)
D07 [verb+able-reg] Precision 0.92

Recall 0.97
F1 0.94

Accuracy 96.21% (+/- 1.19%)
D08 [verb+er-irreg] Precision 0.91

Recall 0.98
F1 0.94

Accuracy 95.93% (+/- 1.21%)
D09 [verb+tion-irreg] Precision 0.97

Recall 0.99
F1 0.98

Accuracy 98.60% (+/- 0.45%)
D10 [verb+ment-irreg] Precision 0.96

Recall 0.99
F1 0.97

Accuracy 98.10% (+/- 0.73%)

Table B.13: Classification results for CNN BATS Inflectional Morphology and Derivational Mor-
phology - GloVe dimension: 50.

47

Class name Metrics Values
E01 [country - capital] Precision 1.00

Recall 1.00
F1 1.00

Accuracy 99.83% (+/- 0.19%)
E02 [country - language] Precision 0.93

Recall 0.98
F1 0.96

Accuracy 97.08% (+/- 0.38%)
E03 [UK-city - county] Precision 0.84

Recall 0.75
F1 0.78

Accuracy 86.63% (+/- 3.48%)
E04 [name - nationality] Precision 0.84

Recall 0.97
F1 0.90

Accuracy 92.79% (+/- 1.58%)
E05 [name - occupation] Precision 0.93

Recall 0.92
F1 0.93

Accuracy 95.06% (+/- 0.75%)
E06 [animal - young] Precision 0.82

Recall 0.80
F1 0.80

Accuracy 87.13% (+/- 1.42%)
E07 [animal - sound] Precision 0.88

Recall 0.84
F1 0.86

Accuracy 90.91% (+/- 1.28%)
E08 [animal - shelter] Precision 0.80

Recall 0.73
F1 0.76

Accuracy 84.93% (+/- 0.62%)
E09 [things - color] Precision 0.81

Recall 0.79
F1 0.79

Accuracy 86.49% (+/- 0.56%)
E10 [male - female] Precision 0.94

Recall 0.92
F1 0.93

Accuracy 95.21% (+/- 1.03%)

Class name Metrics Values
L01 Precision 0.80

Recall 0.81
F1 0.80

Accuracy 78.70% (+/- 0.32%)
L02 [hypernyms - misc] Precision 0.78

Recall 0.75
F1 0.76

Accuracy 84.31% (+/- 0.24%)
L03 [hyponyms - misc] Precision 0.93

Recall 0.92
F1 0.92.5

Accuracy 92.02% (+/- 0.55%)
L04 [meronyms - substance] Precision 0.61

Recall 0.68
F1 0.72

Accuracy 82.39% (+/- 1.04%)
L05 [meronyms - member] Precision 0.76

Recall 0.71
F1 0.73

Accuracy 82.61% (+/- 0.85%)
L06 [meronyms - part] Precision 0.62

Recall 0.50
F1 0.53

Accuracy 76.23% (+/- 3.14%)
L07 Precision 0.81

Recall 0.77
F1 0.79

Accuracy 86.27% (+/- 0.58%)
L08 Precision 0.62

Recall 0.56
F1 0.57

Accuracy 73.48% (+/- %)
L09 [antonyms - gradable] Precision 0.82

Recall 0.82
F1 0.82

Accuracy 88.20% (+/- 0.23%)
L10 [antonyms - binary] Precision 0.56

Recall 0.46
F1 0.50

Accuracy 69.81% (+/- 0.51%)

Table B.14: Classification results for CNN on BATS Encyclopedic Semantics and Lexicographic
Semantics - GloVe dimension: 50.

48

Appendix C. Detailed results on DiffVec dataset for classification

We present here the results for SVM, Random Forest (RF), NN 30 epochs and
CNN on DiffVec using GloVe dimension 100 as explained in Subsection 5.1. The
results for NN 30 epochs are very close to 100 epochs, so we only present the
results for 30 epochs. For all algorithms, we exclude class 13 and 36 as they are
too big for ML-based algorithms. For SVM, we also exclude classes 14 and 16 as
they are too big for SVM with polynomial kernel (3 degrees of freedom).

Class Metrics SVM RF NN CNN
1 P 0.50 0.45 0.41 0.19

R 1.00 0.12 0.60 0.17
F1 0.67 0.19 0.48 0.17
Acc 66.67% 67.92% 58.75% 53.33%

2 P 0.62 1.00 0.99 0.85
R 1.00 1.00 1.00 0.75
F1 0.76 1.00 0.99 0.79
Acc 79.39% 99.91% 99.56% 87.12%

3 P 0.72 1.00 0.98 0.96
R 1.00 1.00 0.99 0.85
F1 0.84 1.00 0.98 0.90
Acc 86.80% 100.00% 98.99% 93.90%

4 P 0.50 0.88 0.86 0.60
R 1.00 0.87 0.87 0.42
F1 0.67 0.87 0.87 0.48
Acc 66.60% 91.53% 91.02% 71.34%

5 P 0.79 1.00 0.99 0.95
R 1.00 1.00 1.00 0.93
F1 0.88 1.00 0.99 0.94
Acc 90.87% 99.90% 99.48% 95.94%

6 P 0.61 0.86 0.85 0.75
R 0.97 0.85 0.86 0.84
F1 0.75 0.86 0.85 0.79
Acc 78.04% 90.62% 90.20% 85.00%

7 P 0.50 0.81 0.80 0.64
R 0.99 0.79 0.80 0.51
F1 0.67 0.80 0.80 0.55
Acc 67.22% 86.80% 86.50% 73.89%

8 P 0.50 1.00 0.94 0.73
R 1.00 0.99 0.91 0.53
F1 0.67 1.00 0.93 0.60
Acc 66.97% 99.69% 95.29% 77.24%

9 P 0.58 1.00 0.98 0.82
R 1.00 1.00 1.00 0.75
F1 0.73 1.00 0.99 0.76
Acc 75.78% 99.92% 99.30% 85.78%

10 P 0.59 1.00 0.98 0.95
R 1.00 0.99 1.00 0.90
F1 0.74 0.99 0.99 0.92
Acc 76.49% 99.63% 99.19% 94.87%

11 P 0.74 1.00 0.97 0.89
R 1.00 0.98 0.99 0.93
F1 0.85 0.99 0.98 0.91
Acc 88.09% 99.34% 98.89% 93.80%

12 P 0.99 1.00 0.99 0.76
R 1.00 0.99 1.00 0.88
F1 0.99 0.99 0.99 0.81
Acc 99.56% 99.65% 99.59% 86.49%

Class Metrics SVM RF NN CNN
14 P Excluded 0.98 0.98 0.74

R 0.97 0.98 0.70
F1 0.97 0.98 0.72
Acc 98.19% 98.61% 81.92%

15 P 0.75 0.67 0.78 1.00
R 1.00 0.20 0.96 0.82
F1 0.83 0.29 0.85 0.86
Acc 83.33% 72.92% 88.33% 94.17%

16 P Excluded 0.99 0.99 0.60
R 0.98 0.99 0.74
F1 0.98 0.99 0.65
Acc 98.99% 99.27% 74.25%

17 P 0.84 1.00 1.00 0.95
R 1.00 1.00 1.00 0.89
F1 0.91 1.00 1.00 0.92
Acc 93.64% 100.00% 99.89% 94.74%

18 P 0.96 1.00 1.00 0.92
R 1.00 1.00 1.00 0.89
F1 0.98 1.00 1.00 0.91
Acc 98.50% 100.00% 99.88% 93.78%

19 P 0.56 1.00 0.98 0.76
R 1.00 1.00 0.99 0.67
F1 0.71 1.00 0.99 0.71
Acc 73.22% 99.90% 99.19% 81.47%

20 P 0.88 1.00 0.98 0.93
R 1.00 0.97 0.98 0.96
F1 0.93 0.98 0.98 0.95
Acc 95.11% 98.89% 98.57% 96.40%

21 P 0.93 1.00 0.99 0.92
R 1.00 0.99 1.00 1.00
F1 0.96 1.00 0.99 0.95
Acc 97.55% 99.71% 99.40% 96.75%

22 P 0.52 1.00 0.95 0.82
R 1.00 1.00 0.93 0.71
F1 0.69 1.00 0.94 0.75
Acc 69.44% 99.88% 96.12% 84.76%

23 P 0.50 1.00 0.98 0.73
R 0.99 0.99 0.99 0.44
F1 0.67 1.00 0.98 0.53
Acc 67.14% 99.74% 98.77% 75.37%

24 P 0.64 1.00 0.99 0.89
R 1.00 1.00 1.00 0.80
F1 0.78 1.00 0.99 0.84
Acc 80.79% 99.87% 99.49% 89.66%

25 P 0.63 1.00 0.98 0.79
R 0.99 0.99 1.00 0.76
F1 0.77 1.00 0.99 0.78
Acc 80.26% 99.71% 99.11% 85.28%

Table C.15: Classification results for ML-based algorithms on DiffVec (class 1 to 12, 14 to 25) -
GloVe dimension: 100.

49

Class Metrics SVM RF NN CNN
26 P 0.50 1.00 0.94 0.66

R 1.00 1.00 0.88 0.63
F1 0.67 1.00 0.91 0.63
Acc 66.67% 99.94% 94.34% 76.44%

27 P 0.62 1.00 0.98 0.96
R 1.00 1.00 1.00 0.83
F1 0.77 1.00 0.99 0.88
Acc 79.59% 99.87% 99.37% 92.74%

28 P 0.88 1.00 0.98 0.98
R 1.00 0.99 1.00 0.99
F1 0.94 1.00 0.99 0.99
Acc 95.40% 99.78% 99.15% 99.16%

29 P 0.52 0.86 0.85 0.77
R 1.00 0.85 0.82 0.63
F1 0.68 0.85 0.83 0.68
Acc 68.62% 90.15% 89.10% 80.99%

30 P 0.50 1.00 0.98 0.83
R 1.00 0.99 0.99 0.73
F1 0.67 1.00 0.99 0.77
Acc 67.21% 99.74% 99.04% 86.04%

Class Metrics SVM RF NN CNN
31 P 0.50 1.00 0.98 0.46

R 1.00 0.99 0.99 0.41
F1 0.66 1.00 0.98 0.42
Acc 66.54% 99.72% 98.83% 64.90%

32 P 0.50 0.83 0.80 0.69
R 0.99 0.81 0.82 0.64
F1 0.66 0.82 0.81 0.66
Acc 66.38% 88.24% 87.11% 78.24%

33 P 0.99 1.00 1.00 1.00
R 1.00 1.00 1.00 1.00
F1 0.99 1.00 1.00 1.00
Acc 99.19% 100.00% 99.93% 99.79%

34 P 0.96 1.00 1.00 0.99
R 1.00 1.00 1.00 0.99
F1 0.98 1.00 1.00 0.99
Acc 98.74% 100.00% 99.93% 99.33%

35 P 0.98 1.00 1.00 0.99
R 1.00 1.00 1.00 0.99
F1 0.99 1.00 1.00 0.99
Acc 99.17% 100.00% 99.90% 99.58%

Table C.16: Classification results for ML-based algorithms on DiffVec (class 26 to 35) - GloVe
dimension: 100.

50

	ClassifyingAndCompletingCopyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au

	ClassifyingAndCompletingAccepted

