998 research outputs found

    Correlative coding with clipping and filtering technique in OFDM Systems

    Get PDF
    The major setbacks of Orthogonal Frequency Multiplexing (OFDM) is its peak-to-average power ratio (PAPR) and intercarrier interference (ICI). The occurrence of these factors restricts its application. Here, the clipping and filtering PAPR reduction technique is king investigated to reduce the PAPR and out-of-band radiation simultaneously by implementing correlative coding. This paper focuses on the preliminaty measurement studies that was canid out. It is shown thmugh simulation that the collaboration of these techniques gives a reasonable PAPR reduction and improves the out-of-band radiation

    Analysis of Alternative Metrics for the PAPR Problem in OFDM Transmission

    Full text link
    The effective PAPR of the transmit signal is the standard metric to capture the effect of nonlinear distortion in OFDM transmission. A common rule of thumb is the log(N)(N) barrier where NN is the number of subcarriers which has been theoretically analyzed by many authors. Recently, new alternative metrics have been proposed in practice leading potentially to different system design rules which are theoretically analyzed in this paper. One of the main findings is that, most surprisingly, the log(N)(N) barrier turns out to be much too conservative: e.g. for the so-called amplifier-oriented metric the scaling is rather log[log(N)]\log[ \log(N)]. To prove this result, new upper bounds on the PAPR distribution for coded systems are presented as well as a theorem relating PAPR results to these alternative metrics.Comment: 5 pages, IEEE International Symposium on Information Theory (ISIT), 2011, accepted for publicatio

    A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

    Get PDF
    Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations

    Partial Shift Mapping Decoding Algorithm to PAPR Reduction in OFDM Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a kind of modulation technique which allows the transmission of high data rates over wideband radio channels subject to frequency selective fading by dividing it to several narrow band and flat fading channels. OFDM has high spectral efficiency and Robustness to multipath fading. In contrast high peak to average power ratio (PAPR) of the transmitted signals is a major drawback of multicarrier systems like OFDM. High PAPR causes the nonlinear distortion in the received data and reduces the efficiency of the high power amplifier in transmitter. To solve the problem many techniques such as SLM and PTS algorithms are proposed. Recently a new simple method with low complexity respected to the SLM and PTS as Partial Shift Mapping (PSM) is proposed by Xing et al. He showed that the PSM method can reduce the PAPR parameter respected the other mentioned methods, effectively. In this paper we will design the corresponding decoder to the PSM technique and will evaluate its robustness respected to the high power amplifier distortion and the AWGN channel. Simulation results will show that the PSM method has a better Power spectrum density and is less sensitive to the type of modulation and number of subcarriers
    corecore