881 research outputs found

    Trajectory generation with natural ZMP references for the biped walking robot SURALP

    Get PDF
    Bipedal locomotion has good obstacle avoidance properties. A robot with human appearance has advantages in human-robot communication. However, walking control is difficult due to the complex robot dynamics involved. Stable reference generation is significant in walking control. The Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped robots. This is the main route of reference generation in this paper too. We employ a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass (CoM) trajectory is obtained from predefined ZMP reference trajectories by Fourier series approximation. We reported simulation results with this algorithm in our previous works. This paper presents the first experimental results. Also the use of a ground push phase before foot take-offs reported in our previous works is tested first time together with our ZMP based reference trajectory. The reference generation strategy is tested via walking experiments on the 29 degrees-of-freedom (DOF) human sized full body humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Experiments indicate that the proposed reference trajectory generation technique is successful

    Vođenje hodajućeg robota u strukturiranom prostoru zasnovano na računalnome vidu

    Get PDF
    Locomotion of a biped robot in a scenario with obstacles requires a high degree of coordination between perception and walking. This article presents key ideas of a vision-based strategy for guidance of walking robots in structured scenarios. Computer vision techniques are employed for reactive adaptation of step sequences allowing a robot to step over or upon or walk around obstacles. Highly accurate feedback information is achieved by a combination of line-based scene analysis and real-time feature tracking. The proposed vision-based approach was evaluated by experiments with a real humanoid robot.Lokomocija dvonožnog robota u prostoru s preprekama zahtijeva visoki stupanj koordinacije između percepcije i hodanja. U članku se opisuju ključne postavke strategije vođenja hodajućih robota zasnovane na računalnome vidu. Tehnike računalnoga vida primijenjene za reaktivnu adaptaciju slijeda koraka omogućuju robotu zaobilaženje prepreka, ali i njihovo prekoračivanje te penjanje na njih. Visoka točnost povratne informacije postignuta je kombinacijom analize linijskih segmenata u sceni i praćenjem značajki scene u stvarnome vremenu. Predloženi je sustav vođenja hodajućih robota eksperimentalno provjeren na stvarnome čovjekolikome robotu

    Development of \u27\u27Bonten-Maru\u27\u27humanoid robot

    Get PDF
    This paper presents the status and research results of the ”Bonten-Maru” humanoid robot project. The main contributions of this project are on CORBA based control of humanoid robot,real time optimal gait generation, control of humanoid robot in a long distance using teleoperation system, operation of humanoid robot in emergency environments, and various humanoid robot motions. In order to verify our research results, we developed the ”Bonten-Maru” humanoid robot. Another important objective is to cooperate with different researchers on humanoid robots by:(1)making the control platform open;(2)easy to be extended;(3)easy to integrate programs in developed in different programming languages. We present the main of the ”Bonten-Maru” humanoid robot project published in more than 20 papers in international journals and conference proceedings

    Multi-Task Active-Vision in Robotics

    Get PDF
    corecore