3,256 research outputs found

    3D/2D Registration of Mapping Catheter Images for Arrhythmia Interventional Assistance

    Full text link
    Radiofrequency (RF) catheter ablation has transformed treatment for tachyarrhythmias and has become first-line therapy for some tachycardias. The precise localization of the arrhythmogenic site and the positioning of the RF catheter over that site are problematic: they can impair the efficiency of the procedure and are time consuming (several hours). Electroanatomic mapping technologies are available that enable the display of the cardiac chambers and the relative position of ablation lesions. However, these are expensive and use custom-made catheters. The proposed methodology makes use of standard catheters and inexpensive technology in order to create a 3D volume of the heart chamber affected by the arrhythmia. Further, we propose a novel method that uses a priori 3D information of the mapping catheter in order to estimate the 3D locations of multiple electrodes across single view C-arm images. The monoplane algorithm is tested for feasibility on computer simulations and initial canine data.Comment: International Journal of Computer Science Issues, IJCSI, Volume 4, Issue 2, pp10-19, September 200

    Focal Spot, Summer 2002

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1091/thumbnail.jp

    Enter the matrix:On how to improve thyroid nodule management using 3D ultrasound

    Get PDF
    Roughly two-thirds of the adult population has a thyroid nodule, of which 90% are benign. Of the adults that have a nodule, approximately 5% will experience symptoms that include a feeling of a marble stuck in the throat, difficulty swallowing and breathing, and cosmetic complaints. Thyroid nodule management primarily makes use of ultrasound as the imaging modality for diagnosis, image guidance during therapy (radiofrequency ablation i.e. RFA), and follow-up. Although ultrasound is relatively easy to apply, it is hard to standardize for repeated measurements and across various users. Further, RFA can benefit from 3D imaging information and a planning and navigation system to improve clinical outcome. These challenges may be overcome by using 3D ultrasound. In this thesis, two phantoms were created on which these methods can be developed. Further, it offers insight into the use of 2D and 3D ultrasound for thyroid nodule management.To assess the impact of changes to an intervention, a baseline was determined of the effectiveness of RFA in Dutch hospitalsUsing a simple phantom, we have shown that utilizing a volume-based measurement technique, that the matrix transducer offers, results in improved measurement accuracy. The more complex, anthropomorphic, phantom serves as a platform on which thermal treatments, such as RFA, can be improved. Using this phantom, we have shown that the impact of 2D and 3D ultrasound on RFA efficacy does not differ from one another; however, the matrix transducer might be more user-friendly for needle placement due to the dual-plane imaging. An additional use case for these phantoms is their capacity to compare dominant and non-dominant hand ablations, as well as serve as a training platform. Additional research is required that employs more operators to find stronger evidence supporting a difference between the ablating hands and the difference in effect of 2D and 3D ultrasound guidance.To make full use of 3D ultrasound, stitching algorithms should be integrated into the ultrasound systems to acquire larger volumes. These can then be processed by deep-learning algorithms for use in computer-aided diagnosis and intervention systems. To further improve the applicability of 3D ultrasound in the clinic, integrating analysis methods such as 3D elastography and 3D Doppler is suggested

    Limited Liver or Lung Colorectal Cancer Metastases. Systemic Treatment, Surgery, Ablation or SBRT

    Get PDF
    Ablació; Càncer colorectal; Metàstasis del fetgeAblación; Cáncer colorrectal; Metástasis en el hígadoAblation; Colorectal cancer; Liver metastasesThe prognosis for oligometastatic colorectal cancer has improved in recent years, mostly because of recent advances in new techniques and approaches to the treatment of oligometastases, including new surgical procedures, better systemic treatments, percutaneous ablation, and stereotactic body radiation therapy (SBRT). There are several factors to consider when deciding on the better approach for each patient: tumor factors (metachronous or synchronous metastases, RAS mutation, BRAF mutation, disease-free interval, size and number of metastases), patient factors (age, frailty, comorbidities, patient preferences), and physicians’ factors (local expertise). These advances have presented major challenges and opportunities for oncologic multidisciplinary teams to treat patients with limited liver and lung metastases from colorectal cancer with a curative intention. In this review, we describe the different treatment options in patients with limited liver and lung metastases from colorectal cancer, and the possible combination of three approaches: systemic treatment, surgery, and local ablative treatments.This research received no external funding

    Minimally Invasive Treatments for Liver Cancer

    Get PDF
    While surgical resection and chemotherapy have remained mainstays in the treatment of both primary and metastatic liver cancers, various minimally invasive techniques have been developed to treat patients for whom traditional approaches either are not available or have failed. Percutaneous ablation techniques such as radiofrequency, microwave, cryoablation, and irreversible electroporation are considered as potentially curative treatments in patients with hepatocellular carcinoma with early-stage tumors. Transarterial chemoembolization (TACE) and radioembolization with yttrium-90 (Y-90) are palliative treatments that have improved survival in patients with unresectable disease. In this chapter, we discuss these minimally invasive techniques, the criteria for selecting appropriate candidates for treatment, and potential limitations to their use

    A 3-Dimensional In Silico Test Bed for Radiofrequency Ablation Catheter Design Evaluation and Optimization

    Get PDF
    Atrial fibrillation (AF) is the disordered activation of the atrial myocardium, which is a major cause of stroke. Currently, the most effective, minimally traumatic treatment for AF is percutaneous catheter ablation to isolate arrhythmogenic areas from the rest of the atrium. The standard in vitro evaluation of ablation catheters through lesion studies is a resource intensive effort due to tissue variability and visual measurement methods, necessitating large sample sizes and multiple prototype builds. A computational test bed for ablation catheter evaluation was built in SolidWorks® using the morphology and dimensions of the left atrium adjacent structures. From this geometry, the physical model was built in COMSOL Multiphysics®, where a combination of the laminar fluid flow, electrical currents, and bioheat transfer was used to simulate radiofrequency (RF) tissue ablation. Simulations in simplified 3D geometries led to lesions sizes within the reported ranges from an in-vivo ablation study. However, though the ellipsoid lesion morphologies in the full atrial model were consistent with past lesion studies, perpendicularly oriented catheter tips were associated with decreases of -91.3% and -70.0% in lesion depth and maximum diameter. On the other hand, tangentially oriented catheter tips produced lesions that were only off by -28.4% and +7.9% for max depth and max diameter. Preliminary investigation into the causes of the discrepancy were performed for fluid velocities, contact area, and other factors. Finally, suggestions for further investigation are provided to aid in determining the root cause of the discrepancy, such that the test bed may be used for other ablation catheter evaluations

    Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Get PDF
    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments

    Heating technology for malignant tumors: a review

    Get PDF
    The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 degrees C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 degrees C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors
    • …
    corecore