18,882 research outputs found

    Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines

    Full text link
    The dearth of prescribing guidelines for physicians is one key driver of the current opioid epidemic in the United States. In this work, we analyze medical and pharmaceutical claims data to draw insights on characteristics of patients who are more prone to adverse outcomes after an initial synthetic opioid prescription. Toward this end, we propose a generative model that allows discovery from observational data of subgroups that demonstrate an enhanced or diminished causal effect due to treatment. Our approach models these sub-populations as a mixture distribution, using sparsity to enhance interpretability, while jointly learning nonlinear predictors of the potential outcomes to better adjust for confounding. The approach leads to human-interpretable insights on discovered subgroups, improving the practical utility for decision suppor

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Finding Statistically Significant Interactions between Continuous Features

    Full text link
    The search for higher-order feature interactions that are statistically significantly associated with a class variable is of high relevance in fields such as Genetics or Healthcare, but the combinatorial explosion of the candidate space makes this problem extremely challenging in terms of computational efficiency and proper correction for multiple testing. While recent progress has been made regarding this challenge for binary features, we here present the first solution for continuous features. We propose an algorithm which overcomes the combinatorial explosion of the search space of higher-order interactions by deriving a lower bound on the p-value for each interaction, which enables us to massively prune interactions that can never reach significance and to thereby gain more statistical power. In our experiments, our approach efficiently detects all significant interactions in a variety of synthetic and real-world datasets.Comment: 13 pages, 5 figures, 2 tables, accepted to the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019

    Explainable subgraphs with surprising densities : a subgroup discovery approach

    Get PDF
    The connectivity structure of graphs is typically related to the attributes of the nodes. In social networks for example, the probability of a friendship between any pair of people depends on a range of attributes, such as their age, residence location, workplace, and hobbies. The high-level structure of a graph can thus possibly be described well by means of patterns of the form `the subgroup of all individuals with a certain properties X are often (or rarely) friends with individuals in another subgroup defined by properties Y', in comparison to what is expected. Such rules present potentially actionable and generalizable insight into the graph. We present a method that finds node subgroup pairs between which the edge density is interestingly high or low, using an information-theoretic definition of interestingness. Additionally, the interestingness is quantified subjectively, to contrast with prior information an analyst may have about the connectivity. This view immediatly enables iterative mining of such patterns. This is the first method aimed at graph connectivity relations between different subgroups. Our method generalizes prior work on dense subgraphs induced by a subgroup description. Although this setting has been studied already, we demonstrate for this special case considerable practical advantages of our subjective interestingness measure with respect to a wide range of (objective) interestingness measures
    corecore