17,309 research outputs found

    Illumination waveform optimization for time-of-flight range imaging cameras

    Get PDF
    Time-of-flight range imaging sensors acquire an image of a scene, where in addition to standard intensity information, the range (or distance) is also measured concurrently by each pixel. Range is measured using a correlation technique, where an amplitude modulated light source illuminates the scene and the reflected light is sampled by a gain modulated image sensor. Typically the illumination source and image sensor are amplitude modulated with square waves, leading to a range measurement linearity error caused by aliased harmonic components within the correlation waveform. A simple method to improve measurement linearity by reducing the duty cycle of the illumination waveform to suppress problematic aliased harmonic components is demonstrated. If the total optical power is kept constant, the measured correlation waveform amplitude also increases at these reduced illumination duty cycles. Measurement performance is evaluated over a range of illumination duty cycles, both for a standard range imaging camera configuration, and also using a more complicated phase encoding method that is designed to cancel aliased harmonics during the sampling process. The standard configuration benefits from improved measurement linearity for illumination duty cycles around 30%, while the measured amplitude, hence range precision, is increased for both methods as the duty cycle is reduced below 50% (while maintaining constant optical power)

    Computational periscopy with an ordinary digital camera

    Full text link
    Computing the amounts of light arriving from different directions enables a diffusely reflecting surface to play the part of a mirror in a periscopeā€”that is, perform non-line-of-sight imaging around an obstruction. Because computational periscopy has so far depended on light-travel distances being proportional to the times of flight, it has mostly been performed with expensive, specialized ultrafast optical systems^1,2,3,4,5,6,7,8,9,10,11,12. Here we introduce a two-dimensional computational periscopy technique that requires only a single photograph captured with an ordinary digital camera. Our technique recovers the position of an opaque object and the scene behind (but not completely obscured by) the object, when both the object and scene are outside the line of sight of the camera, without requiring controlled or time-varying illumination. Such recovery is based on the visible penumbra of the opaque object having a linear dependence on the hidden scene that can be modelled through ray optics. Non-line-of-sight imaging using inexpensive, ubiquitous equipment may have considerable value in monitoring hazardous environments, navigation and detecting hidden adversaries.We thank F. Durand, W. T. Freeman, Y. Ma, J. Rapp, J. H. Shapiro, A. Torralba, F. N. C. Wong and G. W. Wornell for discussions. This work was supported by the Defense Advanced Research Projects Agency (DARPA) REVEAL Program contract number HR0011-16-C-0030. (HR0011-16-C-0030 - Defense Advanced Research Projects Agency (DARPA) REVEAL Program)Accepted manuscrip

    Ultra-broadband active noise cancellation at the ears via optical microphones

    Full text link
    High frequency noise has generally been difficult to be cancelled actively at a person's ears, particularly for active headrest systems aiming to free the listener from noise cancellation headphones. One of the main challenges is to measure the noise precisely at the ears. Here we demonstrate a new error sensing methodology with an optical microphone arrangement for active noise cancellation (ANC). It can measure the noise accurately for ANC without any obstructions at the listener's ears. The demonstrated system, or virtual ANC headphone as we call it, is shown to provide more than 10 dB attenuation for ultra-broadband noise - up to 6000 Hz - inside the ears in a complex sound field. The bandwidth of the controllable noise significantly exceeds the results from the state-of-the-art system, which is below 1000 Hz. The proposed method leads to the next generation of personal hearing protection system and can open up a whole new area of sound control research

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin
    • ā€¦
    corecore