21,333 research outputs found

    Novel approaches to container loading: from heuristics to hybrid tabu search

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy of the University ofBedford shireThis work investigates new approaches to the container loading problem which address the issue of how to load three-dimensional, rectangular items (e.g. boxes) into the container in such a way that maximum utilisation is made of the container space. This problem occurs in several industry sectors where the loading approach places cargo effectively into aeroplanes, ships, trailers or trucks in order to save considerable cost. In carrying out this work, the investigation starts by developing a new heuristic approach to the two-dimensional bin packing problem, which has lower complexity than container loading in the aspects of constraints and geometry. A novel approach, including the heuristic strategies and handling method for remaining areas, is developed that can produce good results when testing with benchmark and real world data. Based on the research for two-dimensional bin packing, a novel heuristic approach is developed to deal with the container loading problem with some practical constraints. The heuristic approach to container loading also includes heuristic strategies and the handling of remaining spaces. The heuristic strategies construct effective loading arrangements where combinations of identical or different box types are loaded in blocks. The handling method for remaining spaces further improves the loading arrangements through the representation, partitioning and merging of remaining spaces. The heuristic approach obtains better volume utilisation and the highest stability compared with other published heuristic approaches. However, it does not achieve as high a volume utilisation as metaheuristic approaches, e.g. genetic algorithms and tabu search.To improve volume utilisation, a new hybrid heuristic approach to the container loading problem is further developed based on the tabu search technique which covers the encoding, evaluation criterion and configuration of neighbourhood and candidate solutions. The heuristic strategies as well as the handling method for remaining spaces developed in the heuristic approach are used in this new hybrid tabu search approach. It is shown that the hybrid approach has better volume utilisation than the published approaches under the condition that all loaded boxes with one hundred per cent support from below. In addition, the experimental results show that both the heuristic and hybrid tabu search approaches can also be applied to the multiple container loading problem

    Recent Advances in Multi-dimensional Packing Problems

    Get PDF

    TS2PACK: A Two-Level Tabu Search for the Three-dimensional Bin Packing Problem

    Get PDF
    Three-dimensional orthogonal bin packing is a problem NP-hard in the strong sense where a set of boxes must be orthogonally packed into the minimum number of three-dimensional bins. We present a two-level tabu search for this problem. The first-level aims to reduce the number of bins. The second optimizes the packing of the bins. This latter procedure is based on the Interval Graph representation of the packing, proposed by Fekete and Schepers, which reduces the size of the search space. We also introduce a general method to increase the size of the associated neighborhoods, and thus the quality of the search, without increasing the overall complexity of the algorithm. Extensive computational results on benchmark problem instances show the effectiveness of the proposed approach, obtaining better results compared to the existing one

    Extreme-Point-based Heuristics for the Three-Dimensional Bin Packing problem

    Get PDF
    One of the main issues in addressing three-dimensional packing problems is finding an efficient and accurate definition of the points at which to place the items inside the bins, because the performance of exact and heuristic solution methods is actually strongly influenced by the choice of a placement rule. We introduce the extreme point concept and present a new extreme point-based rule for packing items inside a three-dimensional container. The extreme point rule is independent from the particular packing problem addressed and can handle additional constraints, such as fixing the position of the items. The new extreme point rule is also used to derive new constructive heuristics for the three-dimensional bin-packing problem. Extensive computational results show the effectiveness of the new heuristics compared to state-of-the-art results. Moreover, the same heuristics, when applied to the two-dimensional bin-packing problem, outperform those specifically designed for the proble
    corecore