126,032 research outputs found

    A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial Networks

    Full text link
    A classic inferential statistical problem is the goodness-of-fit (GOF) test. Such a test can be challenging when the hypothesized parametric model has an intractable likelihood and its distributional form is not available. Bayesian methods for GOF can be appealing due to their ability to incorporate expert knowledge through prior distributions. However, standard Bayesian methods for this test often require strong distributional assumptions on the data and their relevant parameters. To address this issue, we propose a semi-Bayesian nonparametric (semi-BNP) procedure in the context of the maximum mean discrepancy (MMD) measure that can be applied to the GOF test. Our method introduces a novel Bayesian estimator for the MMD, enabling the development of a measure-based hypothesis test for intractable models. Through extensive experiments, we demonstrate that our proposed test outperforms frequentist MMD-based methods by achieving a lower false rejection and acceptance rate of the null hypothesis. Furthermore, we showcase the versatility of our approach by embedding the proposed estimator within a generative adversarial network (GAN) framework. It facilitates a robust BNP learning approach as another significant application of our method. With our BNP procedure, this new GAN approach can enhance sample diversity and improve inferential accuracy compared to traditional techniques.Comment: Typos corrected, Secondary (simulation and theoretical) results added, Additional discussion added, references adde

    Inferring Gene Regulatory Networks from Time Series Microarray Data

    Get PDF
    The innovations and improvements in high-throughput genomic technologies, such as DNA microarray, make it possible for biologists to simultaneously measure dependencies and regulations among genes on a genome-wide scale and provide us genetic information. An important objective of the functional genomics is to understand the controlling mechanism of the expression of these genes and encode the knowledge into gene regulatory network (GRN). To achieve this, computational and statistical algorithms are especially needed. Inference of GRN is a very challenging task for computational biologists because the degree of freedom of the parameters is redundant. Various computational approaches have been proposed for modeling gene regulatory networks, such as Boolean network, differential equations and Bayesian network. There is no so called golden method which can generally give us the best performance for any data set. The research goal is to improve inference accuracy and reduce computational complexity. One of the problems in reconstructing GRN is how to deal with the high dimensionality and short time course gene expression data. In this work, some existing inference algorithms are compared and the limitations lie in that they either suffer from low inference accuracy or computational complexity. To overcome such difficulties, a new approach based on state space model and Expectation-Maximization (EM) algorithms is proposed to model the dynamic system of gene regulation and infer gene regulatory networks. In our model, GRN is represented by a state space model that incorporates noises and has the ability to capture more various biological aspects, such as hidden or missing variables. An EM algorithm is used to estimate the parameters based on the given state space functions and the gene interaction matrix is derived by decomposing the observation matrix using singular value decomposition, and then it is used to infer GRN. The new model is validated using synthetic data sets before applying it to real biological data sets. The results reveal that the developed model can infer the gene regulatory networks from large scale gene expression data and significantly reduce the computational time complexity without losing much inference accuracy compared to dynamic Bayesian network

    Online Spectral Clustering on Network Streams

    Get PDF
    Graph is an extremely useful representation of a wide variety of practical systems in data analysis. Recently, with the fast accumulation of stream data from various type of networks, significant research interests have arisen on spectral clustering for network streams (or evolving networks). Compared with the general spectral clustering problem, the data analysis of this new type of problems may have additional requirements, such as short processing time, scalability in distributed computing environments, and temporal variation tracking. However, to design a spectral clustering method to satisfy these requirements certainly presents non-trivial efforts. There are three major challenges for the new algorithm design. The first challenge is online clustering computation. Most of the existing spectral methods on evolving networks are off-line methods, using standard eigensystem solvers such as the Lanczos method. It needs to recompute solutions from scratch at each time point. The second challenge is the parallelization of algorithms. To parallelize such algorithms is non-trivial since standard eigen solvers are iterative algorithms and the number of iterations can not be predetermined. The third challenge is the very limited existing work. In addition, there exists multiple limitations in the existing method, such as computational inefficiency on large similarity changes, the lack of sound theoretical basis, and the lack of effective way to handle accumulated approximate errors and large data variations over time. In this thesis, we proposed a new online spectral graph clustering approach with a family of three novel spectrum approximation algorithms. Our algorithms incrementally update the eigenpairs in an online manner to improve the computational performance. Our approaches outperformed the existing method in computational efficiency and scalability while retaining competitive or even better clustering accuracy. We derived our spectrum approximation techniques GEPT and EEPT through formal theoretical analysis. The well established matrix perturbation theory forms a solid theoretic foundation for our online clustering method. We facilitated our clustering method with a new metric to track accumulated approximation errors and measure the short-term temporal variation. The metric not only provides a balance between computational efficiency and clustering accuracy, but also offers a useful tool to adapt the online algorithm to the condition of unexpected drastic noise. In addition, we discussed our preliminary work on approximate graph mining with evolutionary process, non-stationary Bayesian Network structure learning from non-stationary time series data, and Bayesian Network structure learning with text priors imposed by non-parametric hierarchical topic modeling

    A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology

    Get PDF
    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment
    • …
    corecore