
Online Spectral Clustering on Network Streams

By

Yi Jia

Submitted to the graduate degree program in Electrical Engineering and Computer Science
and the

Graduate Faculty of the University of Kansas
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Committee members

Jun Huan, Chairperson

Swapan Chakrabarti

Jerzy Grzymala-Busse

Bo Luo

Alfred Tat-Kei Ho

Date defended:



The Dissertation Committee for Yi Jia certifies
that this is the approved version of the following dissertation :

Online Spectral Clustering on Network Streams

Jun Huan, Chairperson

Date approved:

ii



Abstract

Graph is an extremely useful representation of a wide variety of practical systems

in data analysis. Recently, with the fast accumulation of stream data from various

type of networks, significant research interests have arisen on spectral clustering

for network streams (or evolving networks). Compared with the general spectral

clustering problem, the data analysis of this new type of problems may have

additional requirements, such as short processing time, scalability in distributed

computing environments, and temporal variation tracking.

However, to design a spectral clustering method to satisfy these requirement cer-

tainly presents non-trivial efforts. There are three major challenges for the new

algorithm design. The first challenge is online clustering computation. Most of

the existing spectral methods on evolving networks are off-line methods, using

standard eigensystem solvers such as the Lanczos method. It needs to recompute

solutions from scratch at each time point. The second challenge is the paralleliza-

tion of algorithms. To parallelize such algorithms is non-trivial since standard

eigen solvers are iterative algorithms and the number of iterations can not be pre-

determined. The third challenge is the very limited existing work. In addition,

there exists multiple limitations in the existing method, such as computational

inefficiency on large similarity changes, the lack of sound theoretical basis, and

the lack of effective way to handle accumulated approximate errors and large

data variations over time.

In this thesis, we proposed a new online spectral graph clustering approach with

a family of three novel spectrum approximation algorithms. Our algorithms



incrementally update the eigenpairs in an online manner to improve the com-

putational performance. Our approaches outperformed the existing method in

computational efficiency and scalability while retaining competitive or even better

clustering accuracy. We derived our spectrum approximation techniques GEPT

and EEPT through formal theoretical analysis. The well established matrix

perturbation theory forms a solid theoretic foundation for our online clustering

method. We facilitated our clustering method with a new metric to track accumu-

lated approximation errors and measure the short-term temporal variation. The

metric not only provides a balance between computational efficiency and cluster-

ing accuracy, but also offers a useful tool to adapt the online algorithm to the

condition of unexpected drastic noise. In addition, we discussed our preliminary

work on approximate graph mining with evolutionary process, non-stationary

Bayesian Network structure learning from non-stationary time series data, and

Bayesian Network structure learning with text priors imposed by non-parametric

hierarchical topic modeling.

iv



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8

2.1 Unsupervised Learning of Graphs . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Graph Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Representation of Graphs . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Related Work on Spectral Clustering . . . . . . . . . . . . . . . . . . 10

2.3 Graph Clustering of Graph Streams . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Graph Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Related Work on Spectral Clustering of Graph Streams . . . . . . . . 12

2.3.2.1 Incremental Spectral Clustering . . . . . . . . . . . . . . . . 13

2.3.2.2 Evolutionary Spectral Clustering . . . . . . . . . . . . . . . 14

2.4 Frequent Subgraph Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Breadth-First-Search Frequent Subgraph Mining Methods . . . . . . 16

2.4.2 Depth-First-Search Frequent Subgraph Mining Methods . . . . . . . 17

2.5 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Learning Markov Networks . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Learning Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . 21

v



2.6 Learning Bayesian Network Structures from Stream Data . . . . . . . . . . . 23

2.6.1 Change-point based Non-stationary Dynamic Bayesian Networks . . . 24

2.6.2 Time Varying Non-stationary Dynamic Bayesian Networks . . . . . . 25

3 Preliminary Work (I): Approximate Graph Mining based on Evolutionary

Process 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Theoretic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Preliminary Work (II): Dynamic Bayesian Networks based on RJMCMC 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Potential regulator detection . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Structure sampling using RJMCMC . . . . . . . . . . . . . . . . . . 52

4.4 Experimental study and evaluation . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 PreliminaryWork (III): Non-Stationary Dynamic Bayesian Networks based

on Perfect Simulation 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vi



5.3.1 Perfect Simulation Modeling . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Structure Learning of Non-stationary Bay- esian Networks . . . . . . 73

5.3.3 MCMC Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Experimental Study and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Convergence and Computational Performance . . . . . . . . . . . . . 81

5.4.3 Stability of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.4 Structure Prediction and Change-point Detection . . . . . . . . . . . 83

6 Preliminary Work (IV): Bayesian Network Structure Learning with Text

Priors 91

6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 Structure Inference of Bayesian Networks . . . . . . . . . . . . . . . . 91

6.1.2 Hierarchical Latent Dirichlet Allocation Modeling . . . . . . . . . . . 93

6.1.2.1 Nested Chinese Restaurant Process . . . . . . . . . . . . . . 93

6.1.2.2 Dirichlet Process Mixture Model . . . . . . . . . . . . . . . 94

6.1.3 Bayesian Network Structure Inference with Text Priors . . . . . . . . 95

6.1.3.1 Sampling of Topic Trees. . . . . . . . . . . . . . . . . . . . . 97

6.1.3.2 Sampling of Bayesian Network Structures. . . . . . . . . . . 98

6.2 Experimental Study and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.2.1 Structure Prediction Accuracy . . . . . . . . . . . . . . . . 102

7 Online Spectral Clustering on Unlimited Graph Streams 105

7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.1 Incremental Spectral Clustering . . . . . . . . . . . . . . . . . . . . . 106

7.1.2 Evolutionary Spectral Clustering . . . . . . . . . . . . . . . . . . . . 107

vii



7.2 Preliminary and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.2 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3.1 First Order Approximation (FOA) Approach . . . . . . . . . . . . . 109

7.3.2 Eigen Perturbation Theory Based Approaches . . . . . . . . . . . . . 111

7.3.2.1 General Eigen Perturbation Theory (GEPT) Approach . . . 111

7.3.2.2 Enhanced Eigen Perturbation Theory (EEPT) Approach . . 114

7.3.3 Clustering Re-initialization Policies . . . . . . . . . . . . . . . . . . . 118

7.3.4 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4.3.1 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . 122

7.4.3.2 Results on a Synthetic Evolving Graph . . . . . . . . . . . . 123

7.4.3.3 Results on Real Facebook Data . . . . . . . . . . . . . . . . 124

7.4.3.4 Results on Real ASs Data . . . . . . . . . . . . . . . . . . . 125

8 Conclusion and Future Work 128

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

viii



List of Figures

2.1 An example of dynamic bayesian network. . . . . . . . . . . . . . . . . . . . 23

3.1 The procedure of experimental research . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Accuracy comparison between APGM and MGM on Immunoglobulin C1 set . 42

3.3 The Accuracy comparison between APGM and MGM on Immunoglobulin V set . 42

4.1 One example of detecting a potential up-regulation pair A→ B. . . . . . . 52

4.2 One example of the sliding window. With window 1, we found the potential

up-regulation pair A → B. After sliding n time points, with window 2, we

identified B → C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 The A. thaliana oscillator loops of the circadian clock network. . . . . . . . . 56

4.4 Comparison of three methods on CMV Macrophage data. Left: The posterior

probabilities of the numbers of segments (top: FLnsDBNs (λm = 4.05, λs = 2);

middle: RJnsDBNs (λm = 0.65, λs = 2); bottom: ASnsDBNs). Right: The pos-

terior probabilities of the change points (FLnsDBNs: black solid line; RnsDBNs:

magenta dash-dot line; ASnsDBNs: blue dashed line). . . . . . . . . . . . . . . . 58

4.5 Comparison of three methods on CMV + IFNγ Macrophage data. Left: The

posterior probabilities of the numbers of segments (top: FLnsDBNs (λm = 6, λs =

2); middle: RJnsDBNs (λm = 1, λs = 2); bottom: ASnsDBNs). Right: The

posterior probabilities of the change points (FLnsDBNs: black solid line; RnsDBNs:

magenta dash-dot line; ASnsDBNs: blue dashed line). . . . . . . . . . . . . . . . 59

ix



4.6 Comparison of three methods on IFNγ Macrophage data. Left: The posterior

probabilities of the numbers of segments (top: FLnsDBNs (λm = 6.5, λs = 2);

middle: RJnsDBNs (λm = 0.001, λs = 2); bottom: ASnsDBNs). Right: The

posterior probabilities of the change points (FLnsDBNs: black solid line; RnsDBNs:

magenta dash-dot line; ASnsDBNs: blue dashed line). . . . . . . . . . . . . . . . 59

4.7 Comparison of three methods on Arabidopsis T20 data. Left: The posterior prob-

abilities of the numbers of segments (top: FLnsDBNs (λm = 14, λs = 2); middle:

RJnsDBNs (λm = 0.0005, λs = 2); bottom: ASnsDBNs ). Right: The posterior

probabilities of the change points (FLnsDBNs: black solid line; RnsDBNs: ma-

genta dash-dot line; ASnsDBNs: blue dashed line). . . . . . . . . . . . . . . . . 61

4.8 Comparison of three methods on Arabidopsis T28 data. Left: The posterior prob-

abilities of the numbers of segments (top: FLnsDBNs (λm = 14, λs = 2); middle:

RJnsDBNs (λm = 0.005, λs = 2); bottom: ASnsDBNs). Right: The posterior

probabilities of the change points (FLnsDBNs: black solid line; RnsDBNs: ma-

genta dash-dot line; ASnsDBNs: blue dashed line). . . . . . . . . . . . . . . . . 62

5.1 The synthetic networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 The curves of fraction of edges with PSRFs<1.04 on RCnsDBNs and ASnsDBNs-

PSM for Thaliana T20 data. RCnsDBNs: black solid line ; ASnsDBNs-PSM:

blue dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 The VEPP curves on RCnsDBNs and ASnsDBNs-PSM for Thaliana T20 data.

RCnsDBNs: black solid line ; ASnsDBNs-PSM: blue dashed line. . . . . . . 82

5.4 The VEPP curves for CMV data. RCnsDBNs (p = 0.01, λs = 2): black solid

line ; RJnsDBNs (λm = 0.65, λs = 2): magenta dash-dot line. . . . . . . . . 82

5.5 Comparison of two methods on the synthetic data. Up: The posterior probabilities

of the numbers of segments P(m) (top: RCnsDBNs (p = 0.031, λs = 0.5); bottom:

RJnsDBNs (λm = 0.4, λs = 0.5)). Low: The posterior probabilities of the change

points P(t) ( RCnsDBNs: black solid line; RJnsDBNs: magenta dash-dot line). . . 84

x



5.6 Comparison of four methods on CMV Macrophage data. Up: The posterior prob-

abilities of the numbers of segments P(m) (from the top to the bottom: RCnsBNs

(λs = 2), RCnsDBNs (λs = 2), RJnsDBNs (λm = 0.65, λs = 2), and ASnsDBNs).

Low: The posterior probabilities of the change points P(t). . . . . . . . . . . . . 86

5.7 Comparison of four methods on CMV +IFNγ Macrophage data. Up: The posterior

probabilities of the numbers of segments P(m) (from the top to the bottom: RCns-

BNs (λs = 2), RCnsDBNs (λs = 2), RJnsDBNs (λm = 1, λs = 2), and ASnsDBNs).

Low: The posterior probabilities of the change points P(t). . . . . . . . . . . . . 87

5.8 Comparison of four methods on IFNγ Macrophage data. Up: The posterior prob-

abilities of the numbers of segments P(m) (from the top to the bottom: RCnsBNs

(λs = 2), RCnsDBNs (λs = 2), RJnsDBNs (λm = 0.001, λs = 2), and ASnsDBNs).

Low: The posterior probabilities of the change points P(t). . . . . . . . . . . . . 87

5.9 Comparison of four methods on Arabidopsis T20 data. Up: The posterior proba-

bilities of the numbers of segments P(m) (from the top to the bottom: RCnsBNs

(λs = 2), RCnsDBNs (λs = 2), RJnsDBNs (λm = 0.0005, λs = 2), and ASnsDBNs

). Low: The posterior probabilities of the change points P(t). . . . . . . . . . . . 89

5.10 Comparison of four methods on Arabidopsis T28 data. Up: The posterior proba-

bilities of the numbers of segments P(m) (from the top to the bottom: RCnsBNs

(λs = 2), RCnsDBNs (λs = 2), RJnsDBNs (λm = 0.005, λs = 2), and ASnsDBNs).

Low: The posterior probabilities of the change points P(t). . . . . . . . . . . . . 90

6.1 The Math Learning Pathways with 30 Nodes . . . . . . . . . . . . . . . . . . 100

6.2 The A. thaliana oscillator loops of the circadian clock network. . . . . . . . . 101

6.3 The A. thaliana synthetic network. . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 The AUROC score over the number of samples. . . . . . . . . . . . . . . . . 102

7.1 An example of an evolving graph with two snapshots . . . . . . . . . . . . . 109

7.2 The clustering results of the evolving graph in Figure 7.1 by using SC-FOA . 110

xi



7.3 The clustering results of the evolving graph in Figure 7.1 by using FOA . . . 111

7.4 The clustering results of the evolving graph in Figure 7.1 by using GEPT . . 114

7.5 The clustering results of the evolving graph in Figure 7.1 by using EEPT . . 117

7.6 The computational scalability analysis. (a) The scalability analysis over the

graph size N (Dall = 16, Dout = 4, r = 1%); (b) Scalability analysis over

Dout (N = 2000, Dall = 16, r = 1%); (c) Scalability analysis over Dall

with (N = 2000, Dout = 4, r = 1%); (d) Scalability analysis over r (N =

2000, Dall = 16, Dout = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.7 The initial adjacency matrix A of a synthetic evolving graph stream with 2400

nodes and 150 time points (Dall = 16, Dout = 4), r=1%. . . . . . . . . . . . 123

7.8 The adjacency matrices of Facebook social network and constrained activity

network between 03/21/2008-03/28/2008 . . . . . . . . . . . . . . . . . . . . 125

7.9 The adjacency matrices of three successive ASs network snapshots collected

at time 11/11/1997 and 11/12/1997. . . . . . . . . . . . . . . . . . . . . . . 126

xii



List of Tables

3.1 Immunoevasins Protein Lists for Research . . . . . . . . . . . . . . . . . . . 37

3.2 Graph Properties of Immunoevasins Proteins . . . . . . . . . . . . . . . . . . 37

3.3 Number of Patterns for Immunoglobulin C1 Set acquired by APGM. . . . . . . . 40

3.4 Number of Patterns by APGM (τ = 0.35) and MGM on Immunoglobulin C1 . . . 40

3.5 Number of Patterns by APGM (τ = 0.75) and MGM on Immunoglobulin V . . . 40

3.6 Classification Accuracy of APGM (τ = 0.35) and MGM on Immunoglobulin C1 Set 41

3.7 Classification Accuracy of APGM τ = 0.75)and MGM on Immunoglobulin V Set . 41

3.8 Prediction Comparison betwen APGM (τ = 0.35) and MGM on Immunoglobulin C1 43

3.9 Prediction Comparison betwen APGM (τ = 0.75) and MGM on Immunoglobulin V 43

4.1 Comparison of AUROC values on Arabidopsis data . . . . . . . . . . . . . . . . 61

4.2 Comparison of TP |FP = 5 values on Arabidopsis data . . . . . . . . . . . . . . 61

5.1 The comparison of computational performance . . . . . . . . . . . . . . . . . . 82

5.2 The effective range of parameter p for RCnsDBNs . . . . . . . . . . . . . . . . . 83

5.3 The AUROC values of RCnsDBNs on synthetic data . . . . . . . . . . . . . . . 84

5.4 Comparison of AUROC values on Macrophage data . . . . . . . . . . . . . . . . 86

5.5 Comparison of AUROC values on Arabidopsis data . . . . . . . . . . . . . . . . 89

6.1 The AUROC values of BNsTR and BNs on synthetic and real data . . . . . 103

7.1 The comparison of STANDARD, EEPT, GEPT, FOA, SC-FOA on an evolving

synthetic network data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiii



7.2 The comparison of STANDARD, EEPT (σ = 20), GEPT, FOA, SC-FOA on real

Facebook wallposting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 The comparison of STANDARD, EEPT (σ = 25), GEPT, FOA, SC-FOA on real

ASs network data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xiv



Chapter 1

Introduction

Graph is an extremely useful representation of a wide variety of practical systems [270,

124, 201, 9, 42, 7, 64, 238, 18, 49, 193, 155, 129, 255], which has the advantage to uncover

explicit or implicit dependency relations between structural components (spatial or temporal)

among data [58]. In many real-world graphs, communities usually represent key behavioral or

functional units within graphs [151]. Such finding has encouraged researchers to contribute

considerable efforts on community detection in graphs [56, 33, 91].

In data analysis, graph communities are typically described as groups of nodes with denser

connections inside groups and sparser connections between groups and the partitioning of

a graph into communities is called graph clustering [231] or community detection in graphs

[81]. Their plentiful applications could be found in image processing [237, 200], retailers’

co-purchasing analysis [56, 93], academic collaboration and citation network analysis [80, 71,

198], real-life local social network analysis [71, 73, 82], food web analysis of animals [93, 82],

animals’ social network analysis [82, 198], web searching [80, 46],speech processing [18], and

document analysis [198].

The existing graph clustering methods could be summarized into two classes [231, 44]:

divisive clustering and agglomerative clustering. The divisive clustering is top-down meth-

ods to iteratively divide the larger vertex sets into smaller sets [152, 150, 29, 249, 237].

1



The agglomerative clustering is bottom-up methods that start with single vertex sets and

recursively merge smaller sets into larger sets[56, 73]. The divisive clustering methods are

further divided into five categories: cut based clustering [78, 57, 150, 80, 46], multilevel clus-

tering [152], the betweenness based clustering [83, 29, 92, 93], random walk based clustering

[249, 241], and spectral clustering [39, 15, 237, 104, 200, 198, 18]. The typical agglomerative

algorithms are the modularity measure [199] based approaches [71, 56, 73]. It was showed

in the work of Frivanek et al. [159] that if the levels of dendrogram, the hierarchical cluster

tree, is more than 3, all these clustering problems are NP-hard .

Another important dichotomy of graph clustering techniques is heuristic and spectral

[196]. The previous discussed categories excluding spectral clustering methods all drop into

the heuristic domain. Different from most purely experiences based heuristic clustering ap-

proaches to trade optimality for speed [213], spectral clustering approaches have the advan-

tage of providing lower/upper bounds for the minimization/maximization of various graph

partitioning objective functions [196], such as normalized cuts [237] and ratio-cut measure

[45].

Recently, with the fast accumulation of stream data from various type of networks, signif-

icant research interests have arisen on spectral clustering for evolving networks ( or network

streams). Researchers have used spectral clustering techniques to investigate evolving graphs

in various applications, such as, online bloggers’ friendship networks [203, 48, 49], simulated

bird flocking movement data [267], MIT campus student friendship networks [267], and aca-

demic publication networks [247, 99].

We summarized the existing work in spectral clustering problems on evolving graph into

two parts: incremental spectral clustering [248, 158, 203] and evolutionary spectral clustering

[49, 266, 247, 99].

Incremental clustering are usually used to handle two types of clustering tasks [266]: (i)

that sequentially clusters incoming new data points that are each observed once, known

as data stream clustering [40]; (ii) that continuously clusters data points that are each

2



observed at multiple time points. The incremental clustering tasks are mainly focusing on

high computational efficiency.

Evolutionary spectral clustering aims to discover clusters in a sequence of clustering tasks

from evolving graph data [37]. It is designed specifically for evolving graph data with slowly

drifting clustering boundaries and use temporal smoothness functions to eliminate short-term

noises and improve the clustering accuracy.

In this dissertation, we are focusing on task (I) in incremental spectral clustering prob-

lems. Compared with the general spectral clustering problem, the data analysis of this new

type of problems may have the following additional requirements.

• It may need to process large scale graph stream in real-time manner with short enough

time overheads.

• It may need to alleviate the computational concern in distributed computing environ-

ments.

• It may need to track large temporal variations over time.

The applications containing those three aspects are plentiful. We discuss three examples

below.

• Online Social Networks (OSNs), such as Facebook, Twitter, and Linkedin, have made

significant impacts on reshaping the social connections and mind-share among peo-

ple. Spectral clustering techniques provide a very useful tool to track the shifting of

virtual communities and their members’ activity [263, 162]. However, the gigantic

number (millions) of users and their interactions pose great computational challenges

to the classical clustering methods. and their mutual similarity information evolves

continuously over time.

• Understanding Internet topologies is critically important for ISPs (Internet Service

Providers) to enable efficient network management and security monitoring. Currently

3



such analysis relies on data information extraction on Internet Autonomous Systems

(ASs) and exploring the properties of associated graphs on the AS-levels [245]. Spec-

tral analysis has been widely used to understand the network behavior by grouping

ASs [94, 194, 245]. However, the increasing large number of hosts in the backbone

networks poses significant challenges to the fine-granularity analysis of continuously

evolving network topologies [268]. For ISPs, with always limited computational re-

sources, continuously expanding network scales, and highly preferred fast real-time

processing feature, it is important to improve the computational performance of clus-

tering methods to analyze ASs.

• A typical recommender system aggregates and directs recommendations to appropri-

ate recipients based on the opinions and behaviors of other people with the similar

interests [225, 30]. Recently recommender systems become extremely popular in E-

commerce, such as Amazon.com and Ebay.com, and online Social Networks, such as

Facebook.com. Spectral clustering demonstrated itself a very useful tool to improve

the output of recommender systems [3, 4]. However, the choice of products or con-

tents of interests available to people are gigantic, and their mutual similarity infor-

mation evolves continuously over time. For example, the Amazon’s person-to-person

recommendation networks has half a million product nodes [173]. With always limited

computational resources and continuously expanding network scales, to improve the

computational performance of classical clustering methods is important.

Those applications with new properties bring us new challenges for data analysis. The

first challenge is online clustering computation. Most of the existing spectral methods on

evolving networks are off-line methods, using standard eigensystem solvers such as the Lanc-

zos method [96], and need to recompute solutions from scratch at each time point.

The second challenge is the parallelization of algorithms. Scaling spectral clustering

algorithms to very large graph data is challenging. To parallelize such algorithms is non-

trivial since standard eigen solvers are iterative algorithms and the number of iterations can

4



not be predetermined.

The third challenge is the limited existing work. Currently the existing work of online

spectral clustering on large graph streams is very limited. Although the incremental spectral

clustering method proposed by Ning et al. [203] has been designed to improve the compu-

tational performance of spectral clustering for large network streams, there exists multiple

limitations in Ning’s work, such as computational inefficiency on large similarity changes,

the lack of sound theoretical basis, and the lack of effective way to handle accumulated

approximate errors and large data variations over time.

To address these challenges, we proposed an online spectral clustering method ISSUER

(Incremental Spectral cluStering based on matrix pertUrbation thEoRy) with three novel

spectrum approximation algorithms: FOA (First Order Approximation), GEPT (General

Eigen Perturbation Theory) and EEPT (Enhanced Eigen Perturbation Theory). The FOA

algorithm is based on the first order spectrum approximation. Its eigenvalue approximation

is consistent with the results of the eigenvalue perturbation method based on Gerschgorin’s

Theorem [89] used in GEPT. The GEPT algorithm follows Wilkinson’s work [264] to create

sharp bounds for perturbed eigenvalues by shrinking the Gerschgorin disks [89]. It used Stew-

art’s invariant subspace perturbation theory [244] to approximate eigenvectors. By observing

the concerns of GEPT on computational costs and accumulated errors, we proposed our third

approach EEPT by re-investigating the theoretical formalization of Stewart’s work [244] un-

der the context of evolutionary scenario. EEPT solves both eigenvalue and eigenvector

approximation problem on the same theoretic basis of the invariant subspace perturbation.

1.1 Contributions

The major contributions of this thesis are as follows.

• We proposed a family of three novel spectrum approximation algorithms. Our al-

gorithms incrementally update the eigenpairs in an online manner to improve the

5



computational performance. Our approaches outperform the existing method [203]

in computational efficiency and scalability while retaining competitive or even better

clustering accuracy.

• We derived our spectrum approximation techniques GEPT and EEPT through formal

theoretical analysis. The well established matrix perturbation theory forms a solid

theoretic foundation for our online clustering method.

• We facilitated our clustering method with a new metric to track accumulated approx-

imation errors and measure the short-term temporal variation. The metric not only

provides a balance between computational efficiency and clustering accuracy, but also

offers a useful tool to adapt the online algorithm to the condition of unexpected drastic

noise.

• In our preliminary work, we developed multiple novel algorithms on evolving data. We

proposed a novel generative frequent subgraph mining method that used a stochastic

matrix to score label distortions in matching a subgraph pattern to a graph. We

devised our two novel non-stationary Bayesian Network structural learning algorithms

from non-stationary time series data. In addition, in the context of limited available

samples but with additional unstructured text data, we proposed a new BN structure

learning method with text priors imposed by non-parametric hierarchical topic trees

to improve the prediction accuracy.

1.2 Thesis Organization

This thesis is organized in the following way. In Chapter 2, we will outline the backgrounds

of online spectral clustering problem and our previous research work. In Chapter 3, we

will present a novel graph database mining method called APGM (APproximate Graph

Mining) to mine useful approximate subgraph patterns from noisy protein graph databases.

6



In Chapter 4, we will show a new non-stationary Dynamic Bayesian Network structure

learning method based on RJMCMC, domain knowledge on potential regulator detection,

and a flexible lag choosing mechanism to predict biological gene regulatory networks from

microarray data. In Chapter 5, we will introduce another novel non-stationary Dynamic

Bayesian Network structure learning method based on Markov Chain Monte Carlo (MCMC)

and Perfect Simulation techniques to model the time varying gene regulatory networks in

the same data sets studied in Chapter 4. In Chapter 6, we will present a new Bayesian

Network structure learning approach with text priors that is investigated and demonstrated

in psychometric domain. In Chapter 7, we will show how to design various eigen system

approximation techniques to propose our new online spectral clustering method, ISSUER.

Finally, in Chapter 8, we conclude our thesis and discuss our future work.

7



Chapter 2

Background

In this chapter, we will first introduce the backgrounds of our online spectral clustering

problems and of our previous research work.

2.1 Unsupervised Learning of Graphs

Machine learning may be divided into two categories: supervised learning and unsupervised

learning. While the goal of supervised learning is to find a mapping function from data

points to labels (categories or real numbers) to minimize a chosen loss function, unsupervised

learning aims to find patterns (or structures) over or beyond the pure noises among data

to build a new, compact and more informative representation of the input [90]. The mined

patterns could be used to help a supervised problem and get validated or could be applied

to organize and visualize the data [25].

The models dropping into the category of unsupervised learning are very plentiful, for

example, clustering [136, 23, 218], Principle Component Analysis (PCA) [138, 137, 236],

Mixture Model [17, 220], Graphical Statistical Model [146, 236], Hidden Markov Model

(HMM) [216, 21], and many subfields of Data Mining, such as, substructure mining [270,

124, 112], association rule mining [35, 95], frequent sequence mining [272, 258], ranking

[206, 156], etc.

8



The representation of graphs is used to encode the networks in many applications of

machine learning, e.g. biology [155, 129, 278, 171], chemistry [270, 201], drug design [98],

social science [18, 49], document management [7, 64], security [42], image processing [238, 18],

and education [239, 31].

Unsupervised learning of graphs aims to mine patterns from graphs, e.g. frequent sub-

graph mining [270, 124, 201], aggregated synopsis graph mining on graph stream [9, 42],

cluster centroid learning in the clustering problem on graphs [7, 64], and graph clustering on

graphs [152, 150, 29, 249, 238], etc..

In this thesis, we are focusing on two types of models in unsupervised learning of graphs:

frequent subgraph mining and graph spectral clustering. Frequent subgraph mining is an

active research topic to detect subgraph patterns that appear in a graph database with

frequency no less than a user-specified threshold [112]. Spectral clustering is a clustering

task to transfer the minimization/maximization of a graph partitioning or cut problem into

the spectral analysis problem of different variants of graph Laplacians [196].

2.2 Graph Spectral Clustering

2.2.1 Representation of Graphs

In this section, we will give the formal definitions of graphs and other correlated important

terms.

A weighted undirected graph G is a 3-tuple G = (V,E,W ) where V is the set of

vertices of G and E ⊆ V ×V is the set of undirected edges of G with (u, v) ≡ (v, u) : u, v ∈ V .

W : V × V → R+ ∪ {0} is the function assigning a non-negative real value W (l) to each

node pair l ∈ V × V . If a link l ∈ E, then W (l) > 0, otherwise W (l) = 0.

The adjacency matrix A(G) of a weighted undirected graph G with n nodes is an n×n

matrix, where each entry ai,j = W (i, j). A is a symmetric matrix. The graph Laplacian

matrix L for a given G is defined as L(G) = D(G)−A(G), where D(G) is a diagonal matrix

9



with di,i =
∑

j ai,j. The transition matrix B(G) = D−1 × A(G).

2.2.2 Related Work on Spectral Clustering

Spectral graph clustering methods can be classified into two groups [196]: recursively two-

way approaches [237, 198] and directk−way approaches [39, 15, 104, 200, 198].

Shi et al. in 1999 [237] proposed a two-way graph clustering method based on nor-

malized cuts. Given a cut (S, V \S) of a graph G = (V,E,W ), a normalized cut is de-

fined as Ncut(S, V \S) = C(S,V \S)
assoc(S,V )

+ C(V \S,S)
assoc(V \S,V )

, where assoc(S, V ) =
∑

u∈S,t∈V W (u, t) and

assoc(V \S, V ) =
∑

u∈V \S,t∈V W (u, t). By transferring minimum normal cut problem into a

Rayleigh quotient and further relaxing one of its constraints into real value domain, Shi’s

method provided a solution of second smallest eigenvector in a generalized eigenvalue system.

Newman in 2006 [198] provided a two-way clustering method based on modularity mea-

sure [199]. The modularity function is defined as Q = 1
2m

∑
i,j(W (i, j)− P (i, j))δ(gi, gj). m

is the number of edges in the graph. P (i, j) is the expected weight of the edges between

nodes i and j in the null graph model. gi and gj are the groups that nodes i and j be-

longs to. δ(gi, gj) is equal to 1 when gi = gj and otherwise -1. Newman’s method used the

configuration models proposed in [55] as the null model to simulate the right-skewed degree

distributions found in real-world networks [20]. His method provided a solution to the max-

imum modularity problem as the eigenvector with the largest eigenvalue in the modularity

matrix B, where B(i, j) = W (i, j)− P (i, j).

Chan et al. in 1994 [39] proposed a spectral k−way graph partitioning method based on

ratio-cut measure [45]. In their method, they established a connection between k−way ratio-

cut partitioning and Hall’s work on generalized weighted quadratic placement [111]. They

approximated the ratioed assignment matrix R with the eigenvectors V with k−smallest

eigenvalues of the graph Laplacian and recovered the objective partition matrix P from

V V T . Considering the expensive computation on P , they used directional cosine of two

vectors to evaluate the similarity of vertices. They provided a heuristic to form the partition

10



without calculating the whole P matrix.

Alpert et al. in 1999 [15] proposed a spectral k−way partitioning heuristic based on

minimum cut measure. their method used a graph’s eigenvectors to construct a geometric

representation of the graph and reduced the original graph partitioning problem into a vector

partitioning problem. The eigenvectors of the graph Laplacian were used as the coordinates

of vectors representing vertices.

Gu et al. in 2001 [104] proposed a spectral k−way graph clustering method based on

Min-max cut measure. Given a k−way cut Π = (S1, S2, · · · , Sk), Min-max cut is defined

as Mcut(π) =
∑k

i=1
C(Si,V \Si)
C(Si,Si)

, where C(Si, Si) =
∑

u∈Si,v∈Si
W (u, v). The min-max aims

at minimizing inter-cluster similarities while maximizing intra-cluster similarities. Their

method provided a solution to their Min-max cut problem as any orthonormal basis of

the subspace spanned by the eigenvector pertaining to the k−largest eigenvalues of the

normalized Laplasian.

Meila et al. in 2001 [187] proposed a spectral k−way graph clustering approach based

on random walks. They established the relation between the eigenpair of the stochastic

matrix and the generalized eigenpair of graph Laplacian. Their method solved the k-way

graph clustering problem by selecting the eigenvectors [x1, · · · , xk] corresponding to k-largest

eigenvalues and applying k-means in the k − 1 dimensional space defined by [x2, · · · , xk].

Ng et al. in 2002 [200] provided a spectral k−way clustering algorithm based on the

nCut measure. Given a k−way cut Π = (S1, S2, · · · , Sk), The nCut measure is defined as

nCut(π) = 1
2

∑k
i=1

C(Si,V \Si)
vol(Si)

, where vol(Si) =
∑

vj∈Si

∑n
l=1W (j, l) and n = |V |. Their method

solved the nCut problem by applying K-means or any other general clustering algorithm on

the eigenvector matrix corresponding to k−largest eigenvalues of the normalized Laplacian.

In addition, they analyzed the stability of generated clusters by using matrix perturbation

theory [244] by pointing out that the stability of the eigenvectors of a matrix is determined

by the eigengap.

Newman in 2006 [198] extended his two-way method into k−way division. Newman’s

11



method generalized its modularity measure into a k−way by incorporating the assignment

matrix [39]. His method provided a solution of the maximum modularity problem as a

n× (k+1) eigenvector matrix R corresponding to the positive eigenvalues of the modularity

matrix. They found that the upper boundary of the number of clusters in the graph is the

number k + 1 of positive eigenvalues. With each row of R representing the features of each

node, Newman transferred the graph partitioning problem into a vector partitioning problem

on R.

2.3 Graph Clustering of Graph Streams

2.3.1 Graph Streams

Massive streams of graph data widely exist in a number of communication applications

such as social networks [48, 247, 99, 5], telecommunication networks [267] and internet

[203, 48, 49, 11]. Recently it has led to great research interests on various machine learning

problems, such as outlier detection on graph streams [6, 10] and graph clustering on graph

streams [203, 48, 247, 99]. Based on the definition of graphs in Section 2.2.1, we defined the

term, graph streams, as follows.

An evolving weighted undirected graph < G > is a sequence of weighted undirected

graphs < G1, G2, . . . , GT >, where VG1 = · · · = VGT
= V . For simplicity, in the remain-

ing of the paper we write evolving graph to denote evolving weighted undirected graph.

Correspondingly we define an evolving matrix < A > as < A1, A2, . . . , AT >.

2.3.2 Related Work on Spectral Clustering of Graph Streams

The clustering problems in graph streams could be divided into two types: the traditional

node clustering of individual graphs in a stream that we called graph clustering [203, 48]

and the clustering of many different individual graphs in a stream [8, 10]. In this thesis, we

are focusing on graph clustering in graph streams.

12



We summarized the related work on graph spectral clustering of graph streams into two

parts: incremental spectral clustering and the related area, evolutionary spectral clustering.

2.3.2.1 Incremental Spectral Clustering

The incremental clustering tasks are mainly focusing on high computational efficiency. Al-

though there is a large body of work on data stream incremental clustering other than spec-

trum analysis, such as, incremental hierarchical clustering [41], incremental micro-clustering

[176], and incremental correlation clustering [184] and reference therein, the existing work

on incremental spectral clustering is very limited only containing [203, 248, 158].

Ning et al. in 2007 [203] proposed an incremental spectral clustering approach based

on similarity change operations on incidence matrix. Their method reduced the computa-

tional cost by incrementally updating the eigenvalues/vectors with single similarity change

on incidence matrix. Their eigenvalue approximation is the first order Taylor approxima-

tion. Their perturbed eigenvectors is estimated based on their empirical finding that only

the neighborhoods of the nodes connecting the changed edges contribute to the changes of

perturbed eigenvectors. The computational gain of Ning’s method is only obtained in the

condition that a matrix perturbation related to affinity matrices or adjacency matrices of

graphs consists of very limited number of similarity changes.

Valgren et al. in 2007 [248] proposed an incremental spectral clustering approach to

address the applications where the entries in the affinity matrix are costly to compute. Their

method repeatedly updated the cluster representative points of clusters. By evaluating the

similarities between new points and existing cluster representatives, the new points in the

stream are assigned into the existing or new clusters.

Kong et al. in 2011 [158] proposed an incremental spectral clustering that combines

Ning’s and Valgren’s approaches. For each incoming new data point, they followed Valgren’s

work to recompute the cluster representatives. Based on the cluster representative points,

their method created new matrices to build incidence matrix and applied Ning’s similarity

13



operation to update eigen systems.

2.3.2.2 Evolutionary Spectral Clustering

Evolutionary clustering aims to use temporal smoothness functions to improve the clustering

accuracy over time [37]. In recent years, this approach has greatly expanded in classical

graph clustering algorithms, such as evolutionary agglomerative hierarchical clustering [108],

evolutionary density-based clustering [154], and evolutionary spectral clustering [49, 247, 99,

266].

Chi et al. in 2007 [48] proposed a novel evolutionary spectral clustering approach that

provided two temporal smoothing frameworks. The first framework, Preserving Cluster

Quality (PCQ), considered how well the current model fits to the historical data. The second

framework, Preserving Cluster Membership (PCM), considered how well the current model

is consistent with the historical model. Based on these new criteria, they incorporated these

temporal cost functions into the objective functions and provided relaxed solutions based on

the spectrum analysis.

Tang et al. in 2008 [247] extended the evolutionary spectral clustering method to the

multi-mode networks by introducing the temporal smoothness regularization in the block

model. Their method encoded the interactions between two modes and clustering result of

neighboring time stamps as general attributes. Hence, their method transferred the dynamic

multi-mode graph clustering problem to the classical attribute-based clustering problem

solved with singular value decomposition (SVD) and k-means.

A similar temporal cost function formalization as [48, 49] was used by Green et al. in

2011 [99] to propose an new Dynamic Spectral Co-Clustering algorithm (DSCC) that simul-

taneously groups clustered objects and their features over time. Their method incorporated

the regularization term that calculated the difference between clustering centroid prediction

and historical results. They followed Dhillon’s work in [69] to solve it with truncated singular

value decomposition.

14



Xu et al. in 2011 [266] proposed an new evolutionary clustering framework that adaptively

estimated the optimal smoothing parameter using a shrinkage approach. They estimated the

true proximity matrix by minimizing the squared Frobenius norm of the difference between

the true proximity matrix and the smoothed proximity matrix. They adaptively estimated

the forgetting factors of the regularization terms in an iterative way to calculate the sample

means and variance in various cluster memberships.

2.4 Frequent Subgraph Mining

Frequent subgraph patterns are substructures that occur in a graph database (or a set of

graphs) with frequencies equal to or above thresholds predefined by users. Frequent subgraph

mining methods are the algorithms proposed to extract these frequent subgraph patterns

from graph data.

Generally, in the frequent subgraph mining problem, we define a labeled graph as a 5-

tuple G = {V,E,ΣV ,ΣE, λ} where V is the set of vertices of G and E ⊆ V × V is the

set of undirected edges of G. ΣV and ΣE are (disjoint) sets of labels and labeling function

λ : V → ΣV ∪E → ΣE maps vertices and edges in G to their labels. A graph database D

is a set of graphs.

The frequent subgraph mining problem suffers from intensive computation due to two

reasons: (1) subgraph matching is known as an NP-complete problem and hence it is unlikely

we will have a polynomial running time solution in general context with the exception of

planar graphs, and (2) the total number of frequent patterns may grow exponentially in the

number of graphs in a database and in the average size of the graphs in the database. Hence,

many heuristics have been developed to speed up the subgraph mining procedures.

There are multiple ways to classify these frequent subgraph mining methods [165], such

as the classification based on algorithmic approach (apriori and pattern growth), the classi-

fication based on search strategy (depth-first and breadth-first), the classification based on

15



input graphs (a single graph and a set of graphs), and the classification based on output

patterns (complete pattern set and partial pattern set).

In this thesis, we will introduce the existing graph mining methods based on their search

strategies.

2.4.1 Breadth-First-Search Frequent Subgraph Mining Methods

Breadth-First-Search (BFS) is a search strategy that explores a spanning tree of a graph

with the order of being from left to right across levels.

Holder et al. in 1994 [119] provided a method called SUBDUE that used the Minimum

Description Length (MDL) principle [226] to evaluate the quality of proposed substructure

candidates. In SUBDUE, the MDL theory stated that the description length of the best

substructures to represent the whole data should be the minimum. SUBDUE is a pattern

growth based approach that extends the existing pattern candidates by attaching a single

edge. For every size of patterns k, only a limited number of structure patterns with the best

MDL scores are retained. SUBDUE does not claim the completeness of output pattern set.

Inokuchi et al. in 2000 [135] proposed a frequent induced subgraph mining algorithm

called AGM (Apriori based Graph Mining). A subgraph H = (VH , EH) of G = (VG, EG) is

induced if there existing a bijective function f such that for each e ∈ EG f(e) ∈ EH . AGM

encoded an identical induced subgraph with the canonical form of its adjacency matrix. The

canonical forms of subgraphs were used to speed up the subgraph isomorphism. It used the

join operation on two k sized similar patterns to propose a new (k + 1) size pattern that is

called the Apriori based candidate enumeration.

Kuramochi et al. in 2001 [160] proposed a frequent subgraph mining algorithm FSG

(Frequent SubGraphs). It used the adjacency-list representation to encode a graph. FSG

enumerated new pattern candidates by adding an edge to the existing patterns. The canon-

ical form of the adjacency-list were proposed to speed up the computation.

Kuramochi et al. in 2004 [161] proposed a fast subgraph mining algorithm HSIGRAM to

16



mine a complete pattern set on a single large graph. HSIGRAM used maximal independent

set to find the edge-disjoint embeddings of the subgraphs. It iteratively enumerate the new

candidates with the size (k + 1) based on the join operation on two k-size subgraphs that

have a common (k − 1)-size subgraph. HSIGRAM took the time-memory trade-off to only

store partial information of the embeddings.

2.4.2 Depth-First-Search Frequent Subgraph Mining Methods

Depth-first search (DFS) is a search strategy that explores a spanning tree of a graph with

the order of being down paths and being from left to right.

To target the computational issue of the join candidate enumeration operation and prun-

ing false positives in AGM [135] and FSG [160], Yan et al. in 2001 [270] developed the first

DFS graph mining algorithm gSpan (Graph based Substructure pAttern miNing). gSpan

used DFS lexicographic order and minimum DFS code as a novel canonical labeling system

to support the DFS search. It expanded the existing patterns by attaching a single edge to

enumerate new candidates. It used Ullmans subgraph isomorphism matching algorithm and

chose the pre-order traversal of the DFS code tree.

Borgelt et al. in 2002 [27] proposed a new frequent substructure mining algorithm to

mine common patterns from molecule structures. It used candidate growth strategy to

extend candidate size and avoided frequent re-embeddings.

Yan eta al. in 2003 [271] proposed a new frequent closed subgraph mining algorithm

CloseGraph (Closed Graph pattern mining). A frequent subgraph pattern is closed if there

are no super-patterns that has the same support values. The closed subgraph patterns are

used to dramatically reduce the number of patterns in real-world application. CloseGraph

was a DFS algorithm designed based on gSpan [270]. It used techniques such as equivalent

occurrence and early termination to further prune the candidate search space. It outper-

formed gSpan in computational time with 4-10 factors in large graph databases (graphs with

more than 32 edges).

17



Huan et al. in 2003 proposed a new graph mining algorithm called FFSM (Fast Frequent

Subgraph Mining) [124]. FFSM used Canonical Adjacency Matrix (CAM) to encode the

canonical form of a substructure pattern. FFSM considered the concerns of the multiple

candidate generation issue in the join operation and the node attaching restriction issue in

the extension operation. It provided two new candidate enumeration methods, FFSM Join

and FFSM-Extension, on the suboptimal CAM tree. Through these strategies, it avoided

the subgraph isomorphism checking.

Huan et al. in 2004 proposed a new frequent subgraph mining algorithm SPIN (SPanning

tree based maximal graph mINing) [128]. In order to dramatically reduce the total number

of substructure patterns, SPIN mined only maximal frequent subgraphs. SPIN combined

the frequent spanning tree mining and frequent subgraph mining techniques. It first mined

all frequent trees in a spanning tree forest from a general graph database and then retrieved

all frequent maximal subgraphs from the trees.

Nijssen et al. in 2004 proposed a frequent substructure mining method called GASTON

(GrAph/Sequence/Tree extractiON) [202]. GASTON is capable of mining frequent pathes,

trees and graphs based on the pattern enumeration procedure of path-¿tree-¿graph. GAS-

TON acquired the free trees from the same backbones (pathes) of existing tree free patterns

and enumerated new frequent free tree candidates. It enumerated new graph pattern can-

didates by the cycle closing refinement operation that connects existing nodes in on a free

tree or path.

Liu et al. in 2009 proposed a new subgraph pattern mining method called JPMiner [177].

JPMiner was designed to mine jump patterns alleviate the issue of the explosive number of

patterns on the condition of low support value thresholds. A subgraph pattern is called

σ-jump pattern if the differences between its and its super-graphs’ support values are more

than σ. JPMiner integrated the operation of checking jump patterns into the well-known

DFS code tree enumeration framework.

Hsieh et al. in 2010 proposed a new closed subgraph mining algorithm TSP (Temporal

18



Subgraph Pattern algorithm) [121] to mine frequent temporal closed subgraph pattern from

temporal heterogeneous information networks (HIN). In HIN, the nodes could be various

types of entities and the edges represent multiple interactions between entities and time

intervals on these interactions. TSP introduced the TSP-tree, k-level of which only exists

k-length (the number of edges) patterns, to enumerate frequent patterns. It followed the

extension enumeration strategy to do the DFS along the TSP tree.

Li et al. in 2011 proposed two novel graph mining algorithms RP-FP and RP-GD [174] to

mine the representative pattern set to summarize the frequent subgraphs in a graph database.

They used σ-jump patterns [177] as the representative patterns. RP-FP extracted a repre-

sentative set from frequent closed subgraph patterns. It provided a tight ratio bound, but its

computational requirement is intense. RP-GD used three heuristic operations, Last-Succeed-

First-Check, Reverse-Path-Trace and Nephew-Representative-Based-Cover, to improve the

computational cost. But it cannot provide a ratio bound.

2.5 Probabilistic Graphical Models

Probabilistic Graphical Models (PGM) are important unsupervised learning techniques that

use a graph-based representation as the basis for compactly encoding a complex distribution

over a high dimensional space [157]. PGM models are explored since late of 1980s to ad-

dress problems of tabular probabilistic models, such as the exponential storage requirements,

the exponential cost of computing marginal and conditional probabilities, and the lack of

explicitness of the models [232].

In PGM models, nodes represent variables in various problem domains and edges repre-

sent the probabilistic relations between variables. They are capable of providing a compact

and factorized form for the joint distribution of a set of variables.

The statistical graphical models mainly consist of two types of important families of mod-

els, Bayesian Networks (BNs) [116] and Markov Networks [255], based on the property of

19



graph edges (directed or undirected) [157]. In Bayesian Networks, the dependencies of distri-

butions are encoded as acyclic directed graphs while in Markov Networks the dependencies

are represented as undirected graphs.

2.5.1 Learning Markov Networks

In Markov network, an undirected graph structure G : G = (X,E) with the nodes represent-

ing random variables X = {X1, . . . , Xn} and the edges in the graph representing conditional

independencies among X. Given all the maximum cliques C in G, P (X) = 1
Z

∏
ci∈C gci(Xci)

where gci(Xci) is a non-negative potential function of Xci , Xci is the nodes of the clique ci,

and Z is the normalization constant that is equal to
∑

X

∏
ci∈C gci(Xci). P (X) is called the

Gibbs distribution.

There are three data analysis tasks in the Markov network problem: (I) Inference prob-

lem; (II) Parameter learning problem; (III) Structure learning problem.

For the task (I), given a graphical model G, the models need to calculate the marginal

probability of a single variable or a set of variables. For the tasks (II) and (III), the models

need to learn the parameters and graph structures from data.

For the inference problem, the major inference algorithms have variable elimination [280],

belief propagation [275], message-passing [254, 265], and Power EP [189] etc.. For the param-

eter learning problem, the Maximum Likelihood Estimation (MLE) guarantees the global

optimum although the closed form is impossible. The approximation and heuristic methods

designed to reduce the computational cost of with iterative methods have simple gradient

ascent [188], stochastic gradient [251], Score Matching [131], and the loopy belief propaga-

tion [274] etc.. For the structure learning problem, there exist two types of algorithms: score

based approaches and independence based approaches. The score based approaches are used

for the further inference tasks. The major methods have the top-down search that enumer-

ates the candidates improve the conditional log-likelihood [186], L1-regularized based search

[223], bottom-up search [66] and reference therein. The independence based approaches are

20



used to investigate the local structures in the networks. The methods have statistical in-

dependence tests [242, 181], local-to-global strategy [14], the Grow-Shrink Inference-based

Markov Network (GSIMN) [32], the Particle Filter Markov Network (PFMN) algorithm

[182], and reference therein. For a recent survey for markov network learning and inference,

refer to [157, 232]

2.5.2 Learning Bayesian Networks

A Bayesian Network uses a directed acyclic graph to encode probabilistic dependency re-

lationships among variables of interest [116]. It is another important probabilistic graphic

model. A static BN is defined by a graph structure G, and a complete joint probability

distributions of its nodes P (X) = P (X1, . . . , Xn). The structure G : G = (X,E) is an

directed acyclic graph (DAG), which contains a set of variables X = {X1, . . . , Xn}, and a

set of directed edges E, which define the causal relations between variables. Since the graph

structures of static BNs are directed acyclic, the joint distributions can be decomposed as

P (X1, . . . , Xn) =
∏

i P (Xi|πi), where πi is the parents of the node (variable) Xi. We called

this decomposition as the chain rule of conditional probability.

There are mainly three major problems in learning Bayesian Networks: (I) inference

problem; (II) probability learning problem; (III) structure learning problem.

The inference task in Bayesian Network aims to calculate the posterior marginal probabil-

ity or the most probable instantiation (the most probable explanation) of a single node or a

set of nodes given the evidence E [211, 106]. It was proved that exact probabilistic inference

in general is NP-hard [59]. The important exact inference algorithms include Pearl’s work on

message propagation inference algorithms [209, 210], junction tree algorithm [168], Arc re-

versal/node reduction algorithms [233, 234], and Variable elimination (VE) algorithm [280].

To alleviate the computational concerns of exact inference algorithms, researcher developed

approximate algorithms that contain Monte Carlo algorithms [179, 47], Model Simplification

algorithms [250, 147, 166], Search based algorithms [72, 230], and Loopy Belief Propagation

21



algorithms [259, 207].

The probability learning problem in Bayesian network aims to learn the parameters in

a Bayesian network structure. In general there are two assumption settings in probability

learning problem: the maximum likelihood learning (MLE) and the Bayesian setting [65].

In MLE the parameters are exact probabilities while in Bayesian the parameters are for

the conditional density functions to model the conditional distributions in a network struc-

ture. The assumptions for data could be multi-nomial distributions [34, 115, 36] or normal

distributions [87, 118, 191]. The probability learning problem usually is treated as part of

learning the structure of a Bayesian network. The parameterizations are always indicated in

the scoring of structures.

The Bayesian network structure learning problem is also NP-hard proven by Chickering

[51]. A polynomial time complexity could be reached by learning structures with bounds

that was shown in Ziegler’s work [285]. The widely used scoring functions to evaluate the

structures have Bayesian Dirichlet (BD) metric [115], Bayesian information criterion (BIC)

metric [115], Akaike information criterion metric (AIC) [115], and Minimum Description

Length (MDL) metric [28] . The most widely used algorithms for structure learning are

heuristic scoring & searching algorithms and model averaging approaches. The heuristic

searching algorithms include greedy search [60, 52], Genetic algorithms [167, 257], and Sim-

ulated annealing [67] etc.. The model averaging methods are usually applied into the appli-

cations with not much data and no models above others. The dominant techniques in model

averaging are Markov Chain Monte Carlo (MCMC). The latest related work could be found

in [257, 75] and reference therein.

22



Figure 2.1: An example of dynamic bayesian network.

2.6 Learning Bayesian Network Structures from Stream

Data

In many applications, data from which bayesian network models are learned are not simple

sets and instead are temporal data streams. Hence, models that not only show the relation-

ship between variables but also build the connections between the variable state trajectories

over time may explain data better than the static bayesian networks.

In order to temporal processes in stream data, Dynamic Bayesian Network (DBN) was

proposed to represent the temporal dependency among the data. It consisted of two compo-

nents: initial network and temporal transition network [193]. In the DBN setting, the basic

important assumption is the Markov assumption, that is, that P (X t|X0:(t−1)) = P (X t|X t−1).

X t are the observations at time t. An example of dynamic bayesian network structure is

shown in Figure 2.1.

The early related work on DBN models could be found in [193, 155, 129, 278]. Recently,

considering that the underlying stochastic processes that generate the time series expression

data may not be stationary, non-stationary DBN models have attracted significant research

interests [227, 102, 240, 132, 170, 70, 130, 103].

The change-point detection problems have been extensively investigated in time series

models. Recent work could be found in: PCA-based singular-spectrum transformation mod-

els [192]; non-parametric online-style algorithm via direct density-ratio estimation [153];

two-phase linear regression model [178]; a hybrid algorithm that relies on particle filtering

and Markov chain Monte Carlo [54]; the RJMCMC method [100]; The perfect simulation

23



model based on product-partition [77]; change-point detection by minimizing a penalized

contrast function [169]. Researchers found that change-point modeling is a very promising

way of dealing with the non-stationarity property [54]. Hence, the current non-stationary

DBNs methods employed different change-point detection techniques to model the underly-

ing change-point processes of network structures.

Based on different strategies of applying these change-point detection techniques, we di-

vided the existing non-stationary DBN methods into two categories: purely change-point

detection based approaches [227, 102, 103] and constantly varying network learning ap-

proaches [240, 132, 170, 70, 130]. Change-point detection approaches aim to learn a se-

quence of structures and the posterior distribution of the change-points of these structures

while time varying network learning approaches are designed to learning structures for each

time points.

2.6.1 Change-point based Non-stationary Dynamic Bayesian Net-

works

Robinson et al. in 2008 [227] applied Reversible Jump Markov Chain Monte Carlo (RJM-

CMC) [100] to model the non-stationary Bayesian Network problem. They designed 10

move types to span the model space. They provided 3 settings that are Unknown Number

of transitions and Unknown Time of transitions (UNUT), Known Number of transitions

and Unknown Time of transitions (KNUT), and Known Number of transitions and Known

Time of transitions (KNKT). They used a discrete model with the assumed multinomial

distributed data with the Dirichlet prior for observations and derived an extended BDeu

score to evaluate the quality of structures.

Grzegorczy et al. in 2008 [102] applied the allocation sampler technique and introduced

a continuous-valued DBNs method that approximates the non-stationary property with a

Gaussian mixture model. They assumed Gaussian distribution with the normal-Wishart

prior for the time series observations. They used the Dirichlet prior for the weights of

24



mixture vector and the truncated Poisson prior for the number of mixture labels. They

designed six Markov Chain Monte Carlo (MCMC) move types to to traverse the model state

space.

Later in 2011 Grzegorczy et al. [103] used perfect simulation technique to improve the

convergence of their sampling approach based on the same allocation sampler model [102].

They used the Metropolis Hasting algorithm to approximate the structure state space and

used perfect simulation to simulate the mixture vector of change points at each step of

sampling step. They also followed the work in [170] to decompose the complete variable set

into small clusters that reduced the computational cost.

Noticing the low estimation accuracy of Robinson’s work based on RJMCMC [227] and

potential computational concern of Grzegorczy’s approach [103], Jia et al. in 2012 [145]

proposed a new method that used the MCMC approach to sample the model state and

adapted the perfect simulation model to our multi-variate time series data. The new model

integrated with the dynamic bayesian network modeling. The algorithm is designed in

an iterative way that only directly simulate the change-points of structures at the end of

each iteration. The variances of structures between iterations are monitored to decide the

convergence of the output.

Based on their work, Ickstadt et al. [132] further generalized this non-linear BGe mixture

model into a broader framework of non-parametric Gaussian Bayesian networks.

2.6.2 Time Varying Non-stationary Dynamic Bayesian Networks

Song et al. in 2009 [240] proposed a time varying dynamic bayesian network method to

learn structures for each time point in the time series data. They used kernel re-weighting

functions to aggregate the information across time points. They used l1-regularized auto-

regressive least square solver to learn the structures. The optimization problem of the

objective function was solved by the shooting algorithm [85].

Lebre et al. in 2010 [170] proposed a new time varying networks approach based on

25



first-order auto-regression and Yao’s two-stage regime-SSM model [222]. They used the

RJMCMC technique to sample the structures. Their method focuses on local structural

changes and performs node-by-node analysis. They used l1-regularized regression model with

the assumption of Gaussian distributions with the zero means on coefficient parameters.

In order to address the structural overfitting problem in [170], Dondelinger et al. in 2010

[70] introduces information sharing between segments into Lebre’s approach by introducing

a regularization scheme based in inter-time segment information sharing. They used two

information sharing strategies that include sequential information sharing based on the work

of [261] and global information sharing based on the work of [79].

Husmeier et al. in 2010 [130] investigated three regularization schemes based on inter-

segment information sharing to reduce the risk of overfitting and inflated inference uncer-

tainty. The first scheme was proposed by using the hard information coupling based on the

work on [261]. The second scheme used the hard information coupling by applying a bino-

mial distribution with conjugate Beta prior. The third one used a soft information coupling

strategy by applying a binomial distribution with conjugate Beta prior.

26



Chapter 3

Preliminary Work (I): Approximate

Graph Mining based on Evolutionary

Process

We designed an approximate graph mining algorithm based on evolutionary process [139, 140,

143]. We applied our algorithm to both synthetic and real data sets. The experimental results

demonstrate that our algorithm identifies important subgraphs that can not be identified by

exact matching algorithms with a pattern discovery speed (number of patterns divided by the

running time) close to, and sometime better than, conventional exact matching algorithms.

3.1 Introduction

Frequent subgraph mining is an active research topic in the data mining community. The

graph mining techniques have been extensively applied in a wide range of applications do-

mains, such as bioinformatics [122, 126], chemoinformatics [119, 217], social network analysis

[164, 269], and many others.

Many current frequent subgraph mining algorithms share a common strategy in deter-

mining the support value of a subgraph pattern and hence deciding whether the subgraph is

27



frequent. In this strategy, in matching a subgraph pattern to a graph, we require that node

labels, edge relationships, and edge labels should be the same between the subgraph pattern

and the matching graph [123]. We call this strategy exact matching 1.

Although exact matching is widely used, in applying frequent subgraph mining to real-

world applications, we observe that exact matching may not always produce the optimal

results in all applications. The situation becomes worse in those graph databases that

have a large volume of noises (in terms of node or edge label changes) and distortions (in

terms of edge relationship changes). For example, in the application of protein structure

comparison and structure motif identification, which we are specifically interested in within

this paper, graphs corresponding to protein structures often contain a large volume of noises

and distortions. In this application, noise and distortion come from a multidimensional

source: amino acid changes in proteins (which are called mutations in biology) , slightly

different geometric shape of similar proteins, and imperfect experimental measurements,

just to name a few examples. As a consequence, using exact matching posts an unrealistical

constraint in algorithm design and may miss a lot of important patterns in practice.

The goal of our research is to devise frequent subgraph mining algorithms that are capable

of identifying salient patterns in large graph database that are otherwise overlooked by using

exact matching due to the presence of noises and distortions in the graph databases. We call

this new strategy approximate graph mining.

We designed a new approximate subgraph mining method called APGM (APproximate

Graph Mining). We developed a general framework that uses a probability matrix to score

label mismatches in matching a subgraph pattern to a graph. The advantage of the strategy

is that it holds a solid probabilistic ground for a whole class of applications. Utilizing this

scoring scheme, we renewed important definitions, such as isomorphism, subgraph isomor-

phism, and redesigned the conventional support measures in this new context. We designed

1Technically, we should use subgraph isomorphism to define exact matching. The definition of subgraph
isomorphism is deliberately delayed to a later section. An intuitive description is provided here to avoid
excessive details in the introduction

28



a depth-first search strategy with a set of pruning strategies.

3.2 Related work

Graph database mining is an active research field in data mining research. The goal of

graph database mining is to locate useful and interpretable patterns in a large volume of

graph data. Current exact matching graph mining algorithms can be roughly divided into

three categories. The first category uses a level-wise search strategy including AGM (Apriori

based Graph Mining) [135] and FSG (Frequent Subgraphs) [160]. The second category takes

a depth-first search strategy including gSpan (Graph based Substructure PAtterNmining)

[270] and FFSM (Fast Frequent Subgraph Mining) [124]. The third category works by

mining frequent trees, in which SPIN (SPanning tree based maximal graph mINing) [128]

and GASTON (GrAph/Sequence/Tree extractiON) [202] are the representative. Recently,

researchers extend the graph mining problem from static networks into temporal dynamic

networks [163] or involving networks [38]. We refer to [112] for a recent survey.

Frequent subgraph mining with approximate matching capability has also been investi-

gated. Chen et al. proposed a method called gapprox [43], which discovers approximate

matched patterns in a single large network. Yan et al. designed a graph query algorithm

Grafil (Graph Similarity Filtering) for approximate structure data search [273]. The algo-

rithm SUBDUE [119] considers the situation of inexact matching and includes a distortion

cost function as a solution. Zhang et al. provided a method called Monkey [282] to identify

maximal approximately frequent trees. Further the same group introduced a randomized

algorithm called RAM to find approximate subsequent subgraphs by using feature retrieval

to avoid canonical form calculation [281]. Zou et al. proposed an approximation algorithm

MUSE (Mining Uncertain Subgraph pattErns) focusing on uncertain graph database [287].

This method calculated the expected support values of patterns by considering both the

occurrences in the uncertain graph databases and the probabilities of the uncertain graph

29



databases.

The differences between existing algorithms and our proposed one are below. Yan’s work

focuses on proximity measures between graphs and Chen’s work concentrates on pattern

discovery in a single large graph, which are out of the scope of our current paper. SUBDUE

did not provide a complete general frame to address the approximate match issue. It is

only applied to small databases and generates an incomplete set of characteristic subgraphs.

By using a feature set instead of the canonical form to distinguish patterns, RAM may not

provide a complete pattern set. Hence, the algorithm’s efficacy highly depends on the quality

of user-defined feature set. Different from our method and other methods, instead of the

deterministic data, MUSE addressed the uncertain data with inherent statistical properties

in nature [12, 13, 260]. It only handles the uncertain edges and quantifies the uncertainty

with the probability distributions.

Different from these existing works, we use a parametric model to determine the proba-

bility that a pattern belongs to a graph. We developed a general framework to fully utilize

a probability matrix for approximate matching, which we can apply to a number of different

applications. And our theoretic framework promises the completeness of the pattern set.

Finally we offered a practical implementation, applied it on both synthetic and real data

sets, and evaluated our method rigorously.

3.3 Theoretic Framework

We demonstrate our method called APGM (APproximate Graph Mining) with two steps.

In this section, we introduce the theoretic model. In the next section, we show our algorithm

in details.

Definition 1. A labeled graph G is a 5-tuple G = {V,E,ΣV ,ΣE, λ} where V is the set of

vertices of G and E ⊆ V × V is the set of undirected edges of G. ΣV and ΣE are (disjoint)

sets of labels and labeling function λ : V → ΣV ∪ E → ΣE maps vertices and edges in G to

30



their labels. A graph database D is a set of graphs.

We also use V [G] to denote the node set of a graph G and E[G] to denote the edge set

of G. We also use ΣV [G] to denote the node labels, ΣE[G] to denote edge labels, and λG to

denote the labeling function for a graph G. Before we introduce approximate matching, we

define the exact subgraph isomorphic and the compatibility matrix.

Definition 2. A graph G is subgraph isomorphic to another graph G′, denoted by G ⊆ G′

if there exists an injection f : V → V ′, such that

• ∀ u ∈ V, λ(u) = λ′(f(u))

• ∀ u, v ∈ V, (u, v) ∈ E ⇒ (f(u), f(v)) ∈ E ′, and

• ∀ (u, v) ∈ E, λ(u, v) = λ(f(u), f(v))

Definition 3. A compatibility matrix M = (mi,j) is an n×n matrix indexed by symbols

from a label set Σ (n = |Σ|). An entry mi,j (0 ≤ mi,j ≤ 1,
∑

j mi,j = 1) in M is the

probability that the label i is replaced by the label j.

The compatibility matrix offers a probability framework for approximate subgraph min-

ing. A compatibility matrix M is stable if the diagonal entry is the largest one in the row

(i.e. Mi,i > Mi,j, for all j ̸= i). In a stable compatibility matrix, for any label i it is likely

to be replaced by itself rather than by any other symbols.

Most compatibility matrices in real-world applications are stable or almost-stable ones,

and hence for the rest of this section, we only deal with the stable compatibility matrices.

Definition 4. A graph G is approximate subgraph isomorphic to another graph G′,

denoted by G ⊆a G
′ if there exists an injection f : V → V ′, such that

• ∏
u∈V

Mλ(u),λ′(f(u))
Mλ(u),λ(u)

≥ τ,

• ∀ u, v ∈ V, (u, v) ∈ E ⇒ (f(u), f(v)) ∈ E ′, and

31



• ∀ (u, v) ∈ E, λ(u, v) = λ(f(u), f(v))

Given a node injection f from graph G to G′, the co-domain of f is an embedding of

G in G′. The approximate subgraph isomorphism score of f , denoted by Sf (G,G′), is the

product of normalized probabilities: Sf (G,G′) =
∏ Mλ(u),λ′(f(u))

Mλ(u),λ(u)
. For a pair of graphs, there

may be many different ways of mapping nodes from one graph to another and hence may

have different approximate isomorphism scores. The approximate matching score (score for

simplicity) between two graphs, denoted by S(G,G′), is the largest approximate subgraph

isomorphism score, or

S(G,G′) = max
f
{Sf (G,G′)}

.

Definition 5. Given a graph database D, an isomorphism threshold τ , a support threshold

σ (0 < σ ≤ 1), the support value of a graph G, denoted by supG, is the average score of

the graph to graphs in the database, which G is approximately subgraph isomorphic to:

supG =
∑

G′∈D,G⊆aG′
S(G,G′)/|D| (3.1)

G is a frequent approximate subgraph if its support value is at least σ. With this def-

inition, we only use those graphs that a subgraph G is approximate subgraph isomorphic

to (controlled by the parameter τ) to compute the support value of G. We do this to filter

out low quality (but potentially many) graph matchings in counting the support value of a

subgraph. For a moderate sized graph database (100− 1000), according our experience, the

number of frequent subgraphs identified is usually not sensitive to the isomorphism thresh-

old, which makes sense since low quality graph matching has low “weight” in the support

computation nevertheless.

With the above definition, we have the support Apriori property as claimed by the

following Theorem 1.

32



Theorem 1. Given a graph database D and two graphs G ⊆ G′, we have sup(G) ≥ sup(G′).

Proof. In order to prove the theorem, it is sufficient to show that for all graphs P in a graph

database, we have S(G,P ) ≥ S(G′, P ) for all graphs G ⊆ G′. This is true if the compatibility

matrix is stable ( mi,i > mi,j for all j ̸= i). The rest of the proof are trivial and are left to

interested readers.

Problem Statement. Given a graph database D, an isomorphism threshold τ , a com-

patibility matrix M , and a support threshold σ, the approximate subgraph mining problem

is to find all the frequent approximate subgraphs in D.

It is easy to adapt the frequent approximate subgraph mining algorithm to the approxi-

mate clique subgraph mining by adding the full-connection constraint. In order to keep the

consistency with our real world applications, The subgraphs shown in all the examples below

are clique subgraphs instead of subgraphs.

Theorem 2. Given a graph database D, an isomorphism threshold τ = 1, a compatibility

matrix M , and a support threshold σ, the set of approximate frequent subgraph patterns Pa

is exactly the set of frequent subgraph patterns Pf or Pa = Pf . If τ < 1, Pf ⊆ Pa.

Proof. This is the direct consequence of the support value definition 5.

3.4 Algorithm Design

Here we demonstrate a new algorithm APGM for approximate subgraph mining. APGM

starts with frequent single node subgraphs. At a subsequent step, it adds a node to an

existing pattern to create new subgraph patterns and identify their support value. If none

of the resulting subgraphs are frequent, APGM backtracks. APGM stops when no more

patterns need to be searched. Before we proceed to the algorithmic details, we introduce the

following definitions to facilitate the demonstration of the APGM algorithm.

33



Definition 6. Given a graph T , one of the embeddings e = v1, v2, · · · , vk of T in a graph G,

a node v is a neighbor of e if ∃u ∈ e, (u, v) ∈ E[G].

In other words, a neighbor node of a embedding e is any node that connects to at least

one node in e. The neighbor set of an embedding e, denoted by N(e), is the set of e’s

neighbors.

Definition 7. Given a graph T , one of the embeddings e = (v1, v2, · · · , vk) of T in a graph

G, an injection f from T to e, an isomorphism threshold τ , a compatibility matrix M , a node

v ∈ N(e), and a node label l, the approximate subgraph pattern candidate, denoted by

G|T,e,v,l, is a graph (V ′, E ′,ΣV ′ ,ΣE′ , λ′) such that

• λ′(v) = l

• V ′ = {v1, v2, · · · , vk} ∪ v

• E ′ ⊆ V ′ × V ′ ∩ E[G]

• ΣV ′ = ΣV [T ]

• ΣE′ = ΣE[T ]

• ∀ u, v ∈ V ′ : λ′((u, v)) = λG(f(u, v))

• ∏
u∈V ′

Mλ′(u),λG(f(u))

Mλ′(u),λ′(u)
≥ τ

With the the definitions, we present the pseudo code of APGM below.

APGM MAIN(D,M, τ, σ)

1: Begin
2: C ← { frequent single node }
3: F ← C
4: for each T ∈ C do
5: APGM SEARCH(T, τ, σ, F )
6: end for
7: return F
8: End

34



APGM SEARCH(T, τ, σ, F )

1: Begin
2: C ← ∅
3: for each (e, v), e is an embedding of T in a graph G, v ∈ N(e) do
4: CL← approximateLabelSet(T,G, e, v)
5: for each l ∈ CL do
6: X ← G|T,e,v,l
7: C ← C ∪ {X}
8: H(X) = H(X) ∪ (e, v)
9: end for
10: end for
11: remove infrequent T from C
12: F ← F ∪ C
13: for each T ∈ C do
14: APGM SEARCH(T, τ, σ, F )
15: end for
16: End

H is a hash function to store candidate subgraphs and their embeddings. The hash key of

the function in our implementation is a canonical code of the subgraph X, which is a unique

string representation of a graph. We use the Canonical Adjacency matrix (CAM) and the

Canonical Adjacency Matrix code, developed in [123], to compute the canonical code of a

graph.

approximateLabelSet(T,G, e, v)

1: Begin
2: R← ∅
3: l0 ← λG(v)
4: for each l ∈ ΣV [G] do

5: if S(e, T )× M(l0,l)
M(l0,l0)

≥ τ then
6: R← R ∪ l
7: end if
8: end for
9: return R
10: End

APGM enumerates the subgraph candidates from the new proposed embeddings. The

procedure to find new embeddings are described in Definition 7. The information of neighbors

are collected at the beginning of Algorithm APGM MAIN. When all the new embedding are

35



enumerated based on the embeddings of an existing subgraph, APGM has the new subgraph

candidates and each candidate has all its embeddings. The support value of a new subgraph

candidate is calculated by following Definition 4, 5 and 6. We gave one example below to

show the enumeration procedure of patterns and their embeddings.

3.5 Experimental Study

3.5.1 Data Sets

We downloaded all protein structures from Protein Data Bank (PDB). We followed [19] to

use the same software as [127] to calculate Almost-Delaunay (AD) for graph representation

of protein geometry. We took BLOSUM62 [205] as the compatibility matrix and back-

calculated the conditional probability matrix by following the procedure described in [76].

In the BLOSUM62 substitution matrix, there is only one violation of the criterion of stable

matrices– the row for methionine (MET). We normalized the row of MET with the maximum

entry inside it and other rows in the matrix according to Definition 4. We investigated two

immunologically relevant protein domain families: the Immunoglobulin V set and the Im-

munoglobulin C1 set. Immunoglobulin domains are among the most valuable to give insight

into host-defense mechanisms, and insight that can help guide development of therapies and

vaccines against refractory organisms[149]. We collected proteins from SCOP release 1.69.

For each family we created a culled set of proteins with maximal pairwise sequence identity

percentage below 30% by using PISCES server[256]. The PDB ID of Individual proteins

for two sets are shown in Table 3.1. The graph properties of two protein families are listed

in Table 3.2. We denote Immunoglobulin domain proteins as positive sample and random

proteins as negative.

36



Table 3.1: Immunoevasins Protein Lists for Research

PDB ID of proteins in Immunoglobulin C1 set
Proteins for Feature Extraction (10): 1fp5a 1onqa 1ogad 1pqza 1t7va

1l6xa 1je6a 1mjul 1uvqb 1dn0b

Proteins for Leave-one-out Testing (11): 1nfda 1uvqa 1q0xl 1mjuh 1a6za

1k5na 1hdma 3frua 1ogae 1hdmb 1k5nb

PDB ID of proteins in Immunoglobulin V set
Proteins for Feature Extraction (10): 1pkoa 1ogad 1npua 1cdca 1jmaa

1fo0b 1nkoa 1mjuh 1nfdb 1qfoa

Proteins for Leave-one-out Testing (9): 1zcza 1f97a 1eaja 1mjul 1cida

1neua 1cdya 1hkfa 1nezg

Table 3.2: Graph Properties of Immunoevasins Proteins

Immunoglobulin C1 set Immunoglobulin V set
avg. node size 220 158
avg. edge size 3107 2263
max. node size 276 159
min. node size 100 96
max. edge size 4000 4030
min. edge size 1350 713
avg. density 14 14
node label size 20 20
edge label size 27 30

37



3.5.2 Results

During this experimental research, we mined frequent clique subgraphs[125] in order to

enforce biological constraints on the patterns. We compared APGM with the exact graph

mining methods MGM. We chose MGM as the counterpart for the comparison because it

is an available clique pattern mining algorithm. (Any exact matching method with clique

constraint should provide the same number of patterns from a graph database.)

Experimental Protocol. We created our experimental protocol as the following:

• We randomly chose 10 proteins from each family as group I to serve as sources for

feature extraction.

• We used the remainder (positive sample) as group II for training and testing in ”leave-

one-out” cross validation.

• A negative sample set of the the same size as the positive samples in group II was

randomly chosen from PDB. The negative sample was used along with the positive

sample in training and testing.

The complete flowchart of our experiment procedure is shown in Fig. 3.1.

• In order to eliminate the effect of randomness on our classification results, we chose

the optimal parameters to repeat the procedure shown in Fig. 3.1 100 times for each

data set.

Number of Patterns Identified. We identified frequent approximate subgraph patterns

from 10 positive proteins in each family. There are two parameters that may have significant

influence on the set of mined patterns. The first is the support threshold (σ) and the second

is the isomorphism threshold (τ). For simplicity, in the following experiments in this section

we use the new support threshold σ′ = σ× |D|, where |D| is the size of the graph database,

38



Select a subset of graphs Select other proteins

APGM processing

Approximate

Isomorphism

SVM Leave-one-out cross validation

Translate protein structures to graphs

A Set of Protein 
Structures

in a Protein Family

Graph Represented 
Protein Structures  in 

the family

Data Set for Feature 

Extraction

Training and Testing 

Sets for Classification

Protein Data 

Bank(PDB)

Select equivalent 

number of  random proteins

Structure Pattern Set

Object Feature Matrix for 

Training and Testing Sets

Classification Results

Figure 3.1: The procedure of experimental research

and applied the same change in support value. In Table 3.3, we run APGM with different

combinations of τ and σ and collect the total number of identified patterns. Our results

show that the total number of patterns is not sensitive to the isomorphism threshold, and

depends on the support threshold heavily. Such fact eases the worry that the parameter τ

may be too strong for deciding the number of patterns.

For the purpose of comparison, the patterns mined by two mining methods are shown in

Table 3.4 and 3.5, and the patterns acquired by APGM from Immunoglobulin C1 proteins

are also shown in Table 3.3. In our experiment, we treat a pattern set with the number

more than 10, 000 as a meaningless one because our sample space is comparatively small

and the isomorphism check is computationally expensive. From Table 3.5, we see that exact

matching fails to provide useful patterns on the Immunoglobulin V proteins, which is the

typical data set with very noisy background. In comparison, APGM does find some pattern

set with a reasonable size in such situation. (We only use rough parameter combination

grids to do the pattern search. If we increase the precision of τ and σ , more patterns will

39



Table 3.3: Number of Patterns for Immunoglobulin C1 Set acquired by APGM.

τ = 3.5 τ = 4.5 τ = 5.5
σ = 4 811 774 750
σ = 5 141 140 136
σ = 6 17 17 17

Table 3.4: Number of Patterns by APGM (τ = 0.35) and MGM on Immunoglobulin C1

Support Threshold (σ)
6 5.5 5 4.5 4

APGM(τ = 0.35) 17 24 141 202 841
MGM 16 16 126 126 660

Table 3.5: Number of Patterns by APGM (τ = 0.75) and MGM on Immunoglobulin V

Support Threshold (σ)
6 5.5 5 4.5 4

APGM(τ = 0.75) 0 0 0 160 14686
MGM 0 0 0 0 13911

be found.) In order to evaluate the quality of these patterns, we use the identified frequent

subgraphs in classification tests as discussed below.

Classification Performance. In this experimental section, we used libsvm SVM pack-

age (http://www.csie.ntu.edu.tw/thicksimcjlin/libsvm) for protein structure classi-

fication. We treat each mined pattern as a feature and a protein is represented as a

feature vector V = (vi) where 1 ≤ i ≤ n and n is the total number of identified fea-

tures. vi is 1, if the related feature occurs in the protein and otherwise vi is 0. We used

the linear kernel and default parameters for SVM leave-one-out cross validation, where

Accuracy = (TN + TP )/(TN + TP + FN + FP ) (TP, true positive; FP, false positive;

TN, true negative; FN, false negative).

We followed the procedure in Fig. 3.1 to create one data set for feature extraction and

another for training and testing on both Immunoglobulin C1 and V proteins. The classi-

fication results are summarized in Table 3.6 and 3.7. For some parameter combinations,

there are no accuracies - an event which happens under two circumstances. First, there are

no patterns found. Second, the pattern set is too big to be useful. From the tables we see

40



Table 3.6: Classification Accuracy of APGM (τ = 0.35) and MGM on Immunoglobulin C1 Set

Support Threshold (σ)
6 5.5 5 4.5 4

APGM 68.18% 77.27% 86.36% 90.91% 81.82%
MGM 72.73% 72.73% 72.73% 72.73% 72.73%

Table 3.7: Classification Accuracy of APGM τ = 0.75)and MGM on Immunoglobulin V Set

Support Threshold (σ)
6 5.5 5 4.5

APGM − − − 77.78%
MGM − − − −

TP, true positive; FP, false positive; TN, true negative;
FN, false negative.
Accuracy = (TN+TP)/(TN+TP+FN+FP).
− means accuracies are unavailable.

that the classification with APGM-based feature highly outperforms those based on exact

matching. For Immunoglobulin C1 set, the classification based on feature identified by MGM

only reaches 73%, while APGM is between 69% − 91%. For Immunoglobulin V set, since

the exact matching method cannot mine any meaningful patterns, it fails in classification,

while by using APGM, we have the accuracy about 78%. It shows that our APGM has more

capability to mine useful structure information from very noisy background than general

exact matching graph mining algorithms.

We repeated the experimental procedure 100 times for both protein families. We showed

the results of average Accuracy and its variance in Fig. 3.2 and 3.3, and the results of average

Precision and Recall and their variance in Table 3.6 and 3.7. In all of three classification

measures, APGM outperformed the exact matching method MGM, which demonstrates our

previous finding in the previous single experiment.

41



APGM MGM
0  

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

A
cc

u
ra

cy
 (

%
)

Figure 3.2: The Accuracy comparison between APGM and MGM on Immunoglobulin C1 set

APGM MGM
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Figure 3.3: The Accuracy comparison between APGM and MGM on Immunoglobulin V set

42



Table 3.8: Prediction Comparison betwen APGM (τ = 0.35) and MGM on Immunoglobulin C1

Precision (avg.± variance) Recall (avg.± variance)
APGM 87.87± 7.96% 62.50± 12.40%
MGM 86.79± 13.35% 48.21± 16.05%

Table 3.9: Prediction Comparison betwen APGM (τ = 0.75) and MGM on Immunoglobulin V

Precision (avg.± variance) Recall (avg.± variance)
APGM 92.90± 11.63% 47.57± 13.24%
MGM 86.26± 17.72% 30.53± 13.67%

Precision = TP/(TP+FP).
Recall = TP/(TP+FN).
For the C1 set, APGM chose two optimal parameter combinations (τ = 0.35, σ = 4.5) and (τ = 0.35, σ = 5), and MGM
chose two optimal parameters σ = 5, 6. In 200 mining times, APGM found 200 non-empty pattern sets and MGM found
185. For the V set, APGM chose two optimal parameter combinations (τ = 0.75, σ = 4.5) and (τ = 0.75, σ = 5), and
MGM chose two optimal parameters σ = 5, 6. In 200 mining times, APGM found 192 non-empty pattern sets and MGM
found 135.

43



Chapter 4

Preliminary Work (II): Dynamic

Bayesian Networks based on

RJMCMC

We proposed a novel non-stationary DBNs method [141]. Our method is based on Reversible

Jump Markov Chain Monte Carlo (RJMCMC) [100] with a potential regulator detection

technique and a flexible lag choosing mechanism. We apply the approach for the gene

regulatory network inference on three non-stationary time series data. For the Macrophages

and Arabidopsis data sets with the reference networks, our method shows better network

structure prediction accuracy. For the Drosophila data set, our approach converges faster

and shows a better prediction accuracy on transition times. In addition, our reconstructed

regulatory networks on the Drosophila data not only share a lot of similarities with the

predictions of the work of other researchers but also provide many new structural information

for further investigation.

44



4.1 Introduction

Recently non-stationary Bayesian network models have attracted significant research inter-

ests in modeling gene expression data. In non-stationary Bayesian networks, we assume

that the underlying stochastic process that generates the gene expression data may change

over time. Non-stationary Bayesian networks have advantage over conventional methods in

applications where the intrinsic regulatory networks are subject to changes for adapting to

internal or external stimuli. For example, gene expression profiles may go through dramatic

changes in different development stages [227], or in the invasion process of viruses [102], or

as response to changes of outside environment such as temperature and light intensity [183].

Recent work on non-stationary Bayesian networks could be found in [227, 102]. Robin-

son’s method [227] used RJMCMC (Reversible Jump Markov Chain Monte Carlo) to sam-

ple underlying changing network structures, in which an extended BDe metric (Bayesian-

Drichlet equivalent) is applied. And Grzegorczy et al. [102] proposed a non-homogeneous

Bayesian network method to model non-stationary gene regulatory processes, in which they

included a Gaussian mixture model based on allocation sampler technique [204], provided

an extended non-linear BGe (Bayesian Gaussian likelihood equivalent) metric and employed

MCMC (Markov Chain Monte Carlo) to collect samples.

There are several limitations on the existing non-stationary DBNs methods that are dis-

cussed above. First, the RJMCMC that is used in Robinson’s work [227] is a computationally

expensive approach especially in dealing with gene networks. Second, mixture model used

by Grzegorczy et al. avoided intensive computational issue by using MCMC, but it does not

capture the underlying changing network structures over time. In addition, both methods

used a fixed time delay τ= 1 that leads to a relatively low accuracy of prediction on network

re-construction [286].

In this paper, we proposed a new non-stationary DBNs approach extending the work

presented in [227] and [286]. Our method modified RJMCMC by employing a systematic

approach to determine potential regulators. We designed a flexible lag determine mechanism

45



by considering the delay in the gene expression changes between potential regulators and

target genes. In this approach we efficiently reduce the model searching space, capture the

dynamics of transcriptional time delay, and speed up computation with a fast convergence.

4.2 Related Work

With a well-defined probabilistic semantics and the capability to handle hidden variables

[185], Dynamic Bayesian Networks (DBNs) are widely used on regulatory network structure

inference from noisy microarray gene expression data [84, 193, 129, 113, 278, 133, 134, 155,

195, 24].

The early work of applying BNs to analyzing expression data could be found in [84, 193].

Many works have been done since then. Hartemink et al. extended the static BNs by in-

cluding latent variables and annotated edges, and their work focused on scoring the models

of regulatory network [113]. Considering the problem of information loss incurred by dis-

cretization of expression data, Imoto et al. proposed a continuous BNs and non-parametric

regression model [133]. They used Laplace approximation to the marginal probability to in-

fer a BNRC score as the scoring metric for network models. Further, Hartemink and Imoto

extended their techniques to DBNs [155, 278]. Before the BNs, previous efforts at modeling

genetic regulatory networks fell into two categories [113, 129]: fine-scale methods utilizing

differential equations, and coarse-scale methods using clustering and boolean network mod-

els. BNs method is perceived as a good compromise of the two levels. With the challenging

of small number of samples, researchers seek additional information such as transcriptional

localization data[24], DNA sequences of promoter elements [134], and protein-protein inter-

action data[195] to improve the accuracy of gene networks reconstruction.

46



4.3 Method

Structure Learning of Non-stationary Bayesian Networks

Bayesian networks (BNs) are a special case of probabilistic graphic models. A static BN is

defined by an acyclic directed graph G and a complete joint probability distribution of its

nodes P (X) = P (X1, . . . , Xn). The graph G : G = {X,E} contains a set of variables X =

{X1, . . . , Xn}, and a set of directed edges E, defining the causal relations between variables.

With a directed acyclic graph, the joint distribution of random variables X = {X1, . . . , Xn}

are decomposed as P (X1, . . . , Xn) =
∏

i P (Xi|πi), where πi are the parents of the node

(variable) Xi.

The topology of bayesian networks must be a directed acyclic graph and hence could not

be used to model the case where two genes may be a regulator of each other. As an extension

of BNs to model time series data, Dynamic Bayesian Networks (DBNs) lift the limitation

of directed acyclic graph by incorporating time in constructing bayesian networks. Given

an observed time series data D spanning T time points, the structure learning problem of

DBNs is equal to maximizing the posterior probability of the network structure G. By the

Bayes’ rule, the posterior probability is expressed as the following:

P (G|D,T ) =
P (D|G, T )P (G|T )

P (D|T )
(4.1)

The current application of DBNs to gene expression data assumes that the underlying

stochastic process generating the data is stationary. Here we provide a new approach to

capture the structural dynamics of non-stationary data.

We assume the time series gene expression profile is subdivided to m segments. In each

segment, there is one graph Gi : 1 ≤ i ≤ m that dominates the segment. Given a sequence

of network structures GT = (G1, . . . , Gm), the posterior probability in Equation 1 is replaced

47



by Equation 2.

P (GT ,m|D,T ) =
P (D|GT ,m, T )P (GT ,m|T )

P (D|T )
(4.2)

In applying DBNs to gene expression data, we first decide the time lag value τ , which is

the time delay between causes and effects in the time series data. Most previous work set

τ = 1 for modeling a first-order markov chain. However, evidence shows that higher-order

markov chain might better model gene expression data and biological networks [286]. Given

a maximum lag value τmax, in corresponding to the graph structure sequence GT , we assign

a lag vector τT = (τ1, . . . , τm), in which τi : 1 ≤ τi ≤ τmax. So Equation 2 further extends to:

P (GT ,m, τT , τmax|D,T ) =
P (D|GT ,m, τT , τmax, T )P (GT ,m, τT , τmax|T )

P (D|T )
(4.3)

P (D|T ) is treated as a constant, and then

P (GT ,m, τT , τmax|D,T ) ∝ P (D|GT ,m, τT , τmax, T )P (GT ,m, τT , τmax|T )

∝ P (D|GT ,m, τT , τmax, T )P (GT |m,T )

P (τT |m, τmax, T )P (m|T )P (τmax|T ) (4.4)

In the following discussion, we specify the formula for calculating each component of

Equation 4.

The prior P (τmax|T ) is 1 because we set the τmax value when we find the potential parents

for each variable.

We are using the same assumption in [227] that the networks change smoothly over

time. We use the exponential priors on the change of network structures. We transform

the form of the sequence of graph structures GT : GT = (G1, . . . , Gm) into GT : GT =

48



(G1,△G1, . . . ,△Gm−1), where △Gi : 1 ≤ i ≤ m− 1 is the change of edges between Gi and

Gi+1. we calculate P (GT |m,T ) as follows.

P (GT |m,T ) = P (G1,△G1, . . . ,△Gm−1)

∝ P (G1)
∏m−1

i=1 e−λssi

∝ P (G1)e
−λs

∑m−1

i=1
si

∝ P (G1)e
−λsS (4.5)

,where S : S =
∑m−1

i=1 si, and si is the number of edges’ change between Gi+1 and Gi. We

have no prior knowledge on P (G1) and see the uniform distribution as the prior.

We set the exponential prior on the transition times of networks over time and calculate

P (m|T ) as the following.

P (m|T ) ∝ e−λmm (4.6)

We assume that the segments are independent and calculate P (Dh|GT ,m, τT , τmax, T ) of

each segment as the following.

P (Dh|Gh, τh, τmax, T ) =
∫
P (Dh|Gh, τh, τmax,ΘGh

, T )ρ(ΘGh
|Gh)dΘGh

(4.7)

Ih is a segment where a network structure Gh and its corresponding lag value τh work.

ΘGh
are the parameters associated with the data of one segment Ih corresponding to Gh.

ρ(ΘGh
|Gh) is the probability density function of ΘGh

.

We assume that the data are complete and multinomially distributed with a Dirichlet

prior on the parameters. We weight the hyperparameters of Dirichlet distribution in each

segment with the ratio of the segment length over the sample size. We calculate the BDe

49



[117] score of each segment as the following:

P (Dh|Gh, τh, τmax, T ) =
∫
P (Dh|Gh, τh, τmax,ΘGh

, T )ρ(ΘGh
|Gh)dΘGh

=
∏n

i=1

∏qih
j=1

Γ(αij(Ih))

Γ(αij(Ih)+Nij(Ih))∏ri
k=1

Γ(αijk(Ih)+Nijk(Ih))

Γ(αijk(Ih))
(4.8)

N is the sample size of the observed data. |Ih| is the length of the segment Ih. ΘGh

are the multinomial parameters of the joint probability distributions corresponding to Gh.

ri is the number of possible discrete values of xi. qih is the number of configurations of

parents πi for the variable xi in the segment Ih. Nijk(Ih) is the times that xi had value k

in the segment Ih. Nij(Ih) =
∑ri

k=1Nijk(Ih). αijk(Ih) and αij(Ih) are the hyperparameters

for Dirichlet distributions applied in the segment Ih. αijk(Ih) is assumed to be uniformly

distributed inside a segment and is set to αijk(Ih) = α|Ih|/(riqihN). α is the equivalent

sample size.

We calculate the marginal likelihood P (D|GT ,m, τT , τmax, T ) by using the modified

Bayesian-Dirichlet equivalent ( BDe ) metric introduced in [227]. By multiplying the BDe

metric of each segment, we get the extended BDe metric equation as follows:

P (D|GT ,m, τT , τmax, T ) =
∏m

h=1 P (Dh|Gh,m, τh, τmax, T )

=
∏n

i=1

∏m
h=1

∏qih
j=1

Γ(αij(Ih))

Γ(αij(Ih)+Nij(Ih))∏ri
k=1

Γ(αijk(Ih)+Nijk(Ih))

Γ(αijk(Ih))
(4.9)

Once the parents are decided, we use a conditional probability vector p⃗τ = (p1, . . . , pτmax)

with
∑τmax

i=1 pi = 1. So P (τT |m, τmax, T ) is calculated by:

P (τT |m, τmax, T ) =
m∏
j=1

pτj (4.10)

50



where pτj is the conditional probability of the jth component’s value in the lag vector

τT .

4.3.1 Potential regulator detection

We know that the change of expression level of most transcriptional factors (TFs) always

precedes or happens simultaneously with that of target genes[277]. This fact provides a

useful technique to find potential regulators and relative expression lag value τ . We follow

Zou’s work [286] to detect the possible TFs.

In Zou’s work, they used the expression levels of ≥ 1.2-fold and ≤ 0.70-fold compared

with the average gene expression level as up-regulation and down-regulation cutoff thresholds.

Any gene with initial up(down) change of expression level earlier is seen as the potential TFs

of genes with change of expression level later. One example of up-regulation is showed in

Figure 1. Instead of using a fixed value we relax the cutoff thresholds by taking a range

of values. For up-regulation, we use the range 1.0 ∼ 1.2, and for down-regulation, we take

the range 0.6 ∼ 0.8. In order to get all the possible TFs for each gene, we need to consider

all the combinations of possible up(down)-regulation pairs. The yeast cell cycle data set

analyzed by Zou has a limited time points (T = 16), which makes the complete search over

all possible lag values affordable. However, with the increasing sample size and number of

genes in the gene expression profiles, this searching algorithm is unrealistic and will bring

more noises and high computational cost. We developed a heuristic to limit the potential

regulator-target gene pairs for processing large data sets.

Below is our method. We first discretize the expression data by following the method

above. We then search the data and only select the initial up(down)-regulation points. Slide

the window with the width τmax from the start(t = 1) of the time series expression data to

the end (t = T − τmax + 1), where T is the length of time points. For each moving step,

the window slides one time step and only the up(down)-regulation pairs inside the window

are calculated. One example of the sliding window is showed in Figure 2. We group the

51



Up-regula on Lag  τ1

T

Ini al up-change of 

Gene A

Ini al up-change of 

Gene B

Figure 4.1: One example of detecting a potential up-regulation pair A→ B.

Up-regula on Lag  τ1

T

Ini al up-change of 

Gene A
Ini al up-change of 

Gene B

Ini al up-change of 

Gene C

Up-regula on Lag  τ2

τmax

Window sliding direc on

τmax

Window #1 Window #2

Sliding n

 me points

Figure 4.2: One example of the sliding window. With window 1, we found the potential up-
regulation pair A→ B. After sliding n time points, with window 2, we identified B → C.

pairs according to their time lag and calculate the posterior probability for each lag value

τ : 1 ≤ τ ≤ τmax. For each gene, its potential TFs are also collected to be used as the prior

knowledge to limit the search space during the process of structure sampling.

4.3.2 Structure sampling using RJMCMC

We choose sampling approaches rather than heuristic methods to search network structures

due to the reason that microarray expression data are usually sparse, which makes the

posterior probability of structures to be diffuse [129]. In this approach, a group of most

likely structures could explain data better than a single one. We use a sampling method

called RJMCMC (Reversible Jump Markov Chain Monte Carlo) to collect structure samples.

The details of this method are available on [100].

Compared with the move types introduced in [227], we add one new move type called

52



change lag and modify most of the existing operations by incorporating more restrictions.

We also define a vector of time points LT = (L1, . . . , Lm−1), where Li : 1 ≤ i ≤ m− 1 is the

start time point where Gi+1 is applied. We use Metropolis-Hastings algorithm for RJMCMC

sampling [50]. The move set of our RJMCMC consists of 11 move types:

MT1: add edge to Gi.

MT2: delete edge from Gi.

MT3: add edge to △Gi.

MT4: delete edge from △Gi.

MT5: move edge between △Gis.

MT6: shift time, which changes a single Li’s value. This operation will trigger the checking

of τi’s value under the restriction of τi ≤ Li− 2, where 1 ≤ i ≤ m− 1, and τm ≤ T − 1.

MT7: change lag, which changes a single τi’s value. This move type needs to follow the

limitations showed on MT6.

MT8: merge △Gi and △Gi+1.

MT9: split △Gi.

MT10: create new △Gi.

MT11: delete △Gi.

Both MT8 and MT9 operations will trigger the change of dimensions of LT and τT . In

MT8, the new component of τT takes the least value of two merged components. Similarly

with MT8 and MT9, M10 and M11 will change the dimensions of LT and τT . MT1, MT3,

MT10 and MT11 follow the restriction that the edges pointed to one target gene should have

the origins from its potential regulators.

53



4.4 Experimental study and evaluation

We performed all the experiments on a cluster with 256 Intel Xeon 3.2 Ghz EM64T processors

with 4 GB memory each. We implemented our method FLnsDBNs (Flexible Lag Non-

Stationary Dynamic Bayesian Networks) in Matlab.

We compare three approaches: our approach FLnsDBNs, reversible jump Markov chain

Monte Carlo Non-Stationary Dynamic Bayesian Networks (RJnsDBNs) [227], and Allocation

Sampler Non-Stationary Dynamic Bayesian Networks (ASnsDBNs) [102]. For RJnsDBNs,

we use the default setting of unknown numbers and times of transitions (UNUT) in all of the

data sets. RJnsDBNs is implemented in Java, and ASnsDBNs is implemented in Matlab. We

show the average elapsed time of three methods on two data sets in Table 1. In FLnsDBNs,

we ignore the computational cost on the potential regulator detection process because it

takes less than 0.03 second. Although the direct comparison of three approaches by using

the elapsed time is unfair due to the difference in implementation, our method shows the

comparable computational performance with ASnsDBNs.

Our experimental study is based on three data sets: (i) Bone Marrow-derived Macrophages

gene expression time series data (Macrophages data set), (ii) Circadian regulation in Ara-

bidopsis Thaliana gene expression time series data (Arabidopsis data set ), and (iii) Drosophila

muscle development gene expression time series data (Drosophila data set). To compare the

results from different data sets, we follow the evaluation method introduced in [129, 262, 102].

For each data set, we first collect gold standard reference networks as the ground truth. For

the Macrophages data set, such reference networks are available in [148, 224, 102]. For the

Arabidopsis data set, we collect the network information from [183, 228, 62, 110, 190]. For

the Drosophila data set, there is no ground truth regarding the network structure. We com-

pare our method with others by showing the commonality and differences. In case where we

have ground truth network structure (the Bone Marrow data set and Arabidopsis data set),

we use the area under receiver operating characteristic curve (AUROC) values to evaluate

the performance. We obtained the ROC curves by postprocessing the posterior probabilities

54



of directed edges and taking different cutoff thresholds in [0, 1]. If the posterior probability

of an edge is greater than the threshold, we keep the edge. Otherwise, we do not keep the

edge. With the ROC curves, we evaluate the performance of different methods by comparing

the AUROC scores. In addition, for each data set, we show the posterior distribution of the

number of segments and the locations of changepoints. In all of our experimental study, we

find that the method FLnsDBNs produces compatible results with previous methods and

demonstrates better network prediction performance in all the data sets. Before we discuss

the details of experimental results, we present our data set first below.

4.4.1 Data sets

As mentioned briefly before, we evaluate our method on three data sets used in [227, 102].

We preprocess the original data sets by following Zhao’s work [283]. We set the values of

a missed time point with the mean of its two neighbors; i.e., Xi,t = (Xi,t−1 + Xi,t+1)/2 if

1 < t < T . If the missed values are at the beginning or end, simply set the same value as its

neighbor; i.e., Xi,t = Xi,t+1 if t = 1 or Xi,t = Xi,t−1 if t = T . In the following, we show the

details of each data set.

Bone Marrow-derived Macrophages gene expression data. Interferon regulatory

factors (IRFs) are proteins crucial for the mammalian innate immunity [120]. These tran-

scription factors are central to the innate immune response to the infection by pathogenic

organisms [224]. We use the Macrophage data sets sampled from three external conditions:

(I) Infection with Cytomegalovirus (CMV), (II) Treatment with Interferon Gamma (IFNγ),

and (III) Infection with Cytomegalovirus after pretreatment with IFNγ (CMV+IFNγ).

Each data set has 3 genes: Irf1, Irf2 and Irf3, and contains 25 time points with the interval

of 30 minutes. We use the network Irf2↔ Irf1← Irf3 as the gold standard and assume

the network never changes over the time.

Arabidopsis thaliana circadian regulation gene expression data. A. thaliana cir-

cadian gene expression data was sampled to understand the internal clock-signalling network

55



Figure 4.3: The A. thaliana oscillator loops of the circadian clock network.

of plant. Two data sets were collected with the interval of 2h from two light-dark conditions:

10h:10h and 14h:14h light/dark cycles, both of which contain 13 time points. We choose a

group of 9 genes, LHY, CCA1, TOC1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3 for anal-

ysis, which create transcriptional feedback loops. We show the referred biological regulatory

network in Figure 3. In this network, CCA1, LHY and TOC1, as core components of the

reciprocal regulation , are important for the proper function of this oscillator network in A.

thaliana [183]. CCA1 and LHY proteins’ direct binding to the promoter of TOC1 represses

the expression of TOC1, and ELF3 works as a negative regulator of light signaling to the

clock oscillator and enables the induction of oscillator output [228, 62]. The pseudo-response

regulators PRR5 and PRR9 are activated by CCA1 and LHY accompanied with light, and

repress CCA1 and LHY subsequently. G1 is activated by light and improve the expression

of TOC1. ELF4 is repressed by CCA1. And PRR3 is highly correlated with TOC1 and

together form a functional complex [208].

Drosophila muscle development gene expression data. The original transcrip-

tional profile on the life cycle of Drosophila melanogaster contains 4028 genes, nearly one

third of all of the predicted Drosophila genes. The samples were collected over 66 time steps

throughout the life cycle of Drosophila melanogaster consisting of four periods: embryonic,

larval, pupal, and adulthood periods [16]. The intervals of sampling are not even, from

overlapped 1 hour during the early embryonic period to multiple days in the adulthood.

We choose 11 genes for analysis, which are eve, gfl/lmd, twi, mlc1, sls, mhc, prm, actn, up,

myo61f, msp300. Those genes were reported to be related with the muscle development of

56



Drosophila.

4.4.2 Experimental results

In this section, we compare the experimental results of three approaches: FLnsDBNs, RJns-

DBNs, and ASnsDBNs on three data sets.

The experimental results on Macrophages data. On the Macrophages data, for

each method, we run 10,000 iterations for burn-in and then take additional 40,000 iterations

to collect samples. In Figure 4, 5 and 6, we show the posterior probabilities of the numbers

of segments and changepoints on three Macrophages data sets. The sample collection of

FLnsDBNs on the Macrophages data takes about 2 minutes.

For the CMV data, we first observe that there is a high agreement among all three

methods in term of the range of the number of identified segments. The ranges are 1 ∼ 4

for FLnsDBNs, 1 ∼ 4 for RJnsDBNs, and 2 ∼ 4 for ASnsDBNs. When we compare the

distributions of the number of segments identified by three methods, we observe that ASns-

DBNs clearly identifies a dominant 3-segment in the data set while the posterior probabilities

produced by FLnsDBNs and RJnsDBNs are flat. For the predicted locations of the change-

points, FLnsDBNs identifies three posterior peaks at time stamps 4, 8, and 14. RJnsDBNs

finds four peaks at 5, 11, 14, and 19. In ASnsDBNs, two peaks happen at 1 and 4 with the

probabilities more than 0.5. There is a consensus among three methods that the most prob-

able changepoint occurs at the location 4. The results of three methods are consistent with

the biological phenomenon that the simultaneous responses of Macrophages happen under

the attack of Cytomegalovirus [102]. In order to assess the network prediction performance,

we show the AUROC scores in Table 2. We find that all methods perform well in the CMV

data with the AUROC scores equal to 1.

For the CMV + IFNγ data, all three methods identify 1 segment, which corresponds

to a coexistence state between virus and its host cell [22, 102], and have the same range of

the number of segments 1 ∼ 3. In Table 2, we find that FLnsDBNs shows a much better

57



1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P
(m

)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P
(m

)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P
(m

)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points (t)

P
(t)

Figure 4.4: Comparison of three methods on CMV Macrophage data. Left: The posterior prob-
abilities of the numbers of segments (top: FLnsDBNs (λm = 4.05, λs = 2); middle: RJnsDBNs
(λm = 0.65, λs = 2); bottom: ASnsDBNs). Right: The posterior probabilities of the change points
(FLnsDBNs: black solid line; RnsDBNs: magenta dash-dot line; ASnsDBNs: blue dashed line).

network prediction with the AUROC score equal to 1 while in RJnsDBNs the AUROC score

is equal to 0.2222 and in ASnsDBNs the AUROc score is equal to 0.6667.

For the IFNγ data, there is a postulated transition with the immune activation under the

treatment of IFNγ. FLnsDBNs infers 2 segments and finds two posterior peaks of transition

time at 8 and 14. ASnsDBNs and RJnsDBNs infer only one segment, even though the two

methods identify a differnt posterior peak at the location around 5. On the assessment of

the predicted network structures, the AUROC scores are 0.8333 in FLnsDBNs, 0.7778 in

RJnsDBNs, and 0.6667 in ASnsDBNs. In all of three Macrophages data sets, our approach

shows the best network prediction accuracy.

For each Macrophages data set using FLnsDBNs and RJnsDBNs methods, we find that

the posterior probability distributions of any edge do not change much across different seg-

ments. This finding is consistent with the assumption that the underlying network does not

change through the time.

The experimental results on Arabidopsis data. On the Arabidopsis data, we use a

larger number of iterations in the MCMC sampling because the data set is much larger than

the Macrophages data. We run 10,000 iterations for burn-in and then take additional 990,000

iterations to collect samples. The sample collection of FLnsDBNs on the Arabidopsis data

takes about 4 hours.

58



1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P
(m

)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P
(m

)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P
(m

) 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points (t)

P
(t)

Figure 4.5: Comparison of three methods on CMV +IFNγ Macrophage data. Left: The posterior
probabilities of the numbers of segments (top: FLnsDBNs (λm = 6, λs = 2); middle: RJnsDBNs
(λm = 1, λs = 2); bottom: ASnsDBNs). Right: The posterior probabilities of the change points
(FLnsDBNs: black solid line; RnsDBNs: magenta dash-dot line; ASnsDBNs: blue dashed line).

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P
(m

)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P
(m

)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P
(m

) 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points (t)

P
(t)

Figure 4.6: Comparison of three methods on IFNγ Macrophage data. Left: The posterior prob-
abilities of the numbers of segments (top: FLnsDBNs (λm = 6.5, λs = 2); middle: RJnsDBNs
(λm = 0.001, λs = 2); bottom: ASnsDBNs). Right: The posterior probabilities of the change
points (FLnsDBNs: black solid line; RnsDBNs: magenta dash-dot line; ASnsDBNs: blue dashed
line).

59



In Figure 7 and 8, we show the posterior distributions of the numbers of segments and

changepoints on two Arabidopsis data sets. For the Arabidopsis T20 data, in FLnsDBNs the

range of the number of segments is 2 ∼ 3, and in RJnsDBNs and ALnsDBNs the ranges are

1 ∼ 4. In FLnsDBNs, the dominant samples are the ones with 2 segments while in AlnsDBNs

they are 3 segments. For the Arabidopsis T28 data, the ranges are 2 ∼ 3 in FLnsDBNs,

1 ∼ 3 in RJnsDBNs and 3 ∼ 5 in ASnsDBNs. FLnsDBNs infers 2 segments, RJnsDBNs

infers 1 segment, and ASnsDBNs infers 5 segments, respectively on the T28 data. In both

data sets, we find that the differences of the posterior probabilities of 2 and 3 segments are

low in RJnsDBNs and the difference between the posterior peaks of changepoints and the

time points nearby are not noticeable. Hence, for this data set, we only use a single network

in RJnsDBNs to compare with other methods. Using ASnsDBNs, the poseterior peaks of

changepoints on T20 data are 1, 5 and those on T28 are 2, 7, 10. In [102], the results of

ASnsDBNs are explained as a phase shift incurred by different dark/light cycles. However,

our approach predicts the posterior peak of changepoints both at the location 6.

We evaluated the network reconstruction accuracy of three methods by comparing with

the reference network showed in Section 3.2. We show the AUROC scores in Table 3. In

addition, we use a new comparative criteria called the TP|FP=5 counts [262, 102] to further

demonstrate the performance of our method. TP are the true positive counts; FP are the

false positive counts; TP|FP=5 are the TP counts when FP is 5. The TP|FP=5 counts of

three approaches are shown in Table 4. FLnsDBNs outperforms other two methods in both

two evaluation criteria of the AUROC score and TP|FP=5 counts on the Arabidopsis data

sets.

The experimental results on Drosophila data. For the Drosophila data, We run

10,000 iterations for burn-in and then take additional 990,000 iterations to collect samples.

The sample collection of FLnsDBNs on the Drosophila data takes about 10 hours.

We show the results of posterior probabilities of the numbers of segments and change-

points in Figure 9. ASnsDBNs predicts more than 20 segments and fails to provide a mean-

60



1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments

P
os

te
rio

r P
ro

ba
bi

lit
y

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments

P
os

te
rio

r P
ro

ba
bi

lit
y

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments

P
os

te
rio

r P
ro

ba
bi

lit
y

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points

P
os

te
rio

r P
ro

ba
bi

lit
y 

of
 C

ha
ng

ep
oi

nt
s

Figure 4.7: Comparison of three methods on Arabidopsis T20 data. Left: The posterior prob-
abilities of the numbers of segments (top: FLnsDBNs (λm = 14, λs = 2); middle: RJnsDBNs
(λm = 0.0005, λs = 2); bottom: ASnsDBNs ). Right: The posterior probabilities of the change
points (FLnsDBNs: black solid line; RnsDBNs: magenta dash-dot line; ASnsDBNs: blue dashed
line).

Table 4.1: Comparison of AUROC values on Arabidopsis data

ArabidopsisT20 ArabidopsisT28
RJnsDBNs 0.5070 0.5773
ASnsDBNs 0.5929 0.5641
FLnsDBNs G1:0.6138; G2:0.6150 G1:0.6558; G2:0.6628

TP, true positive; FP, false positive; TN, true negative;
FN, false negative.
Sensitivity = TP/(TP+FN).
Specificity = TN/(TN+FP).
Complementary Specificity = 1- Specificity =
FP/(TN+FP).
The ROC curves are plotted with the Sensitivity scores
against the corresponding Complementary Specificity
scores. G1 and G2 are two networks reconstructed based
on the changepoint 6.

Table 4.2: Comparison of TP |FP = 5 values on Arabidopsis data

ArabidopsisT20 ArabidopsisT28
RJnsDBNs 2 6
ASnsDBNs 4 3
FLnsDBNs G1:8; G2:8 G1:11; G2:11

G1 and G2 are two reconstructed networks separated by
the changepoint 6.

ingful result of changepoints. Therefore, in the subsequent discussion, we only compare

FLnsDBNs and RJnsDBNs approaches. The assumed transition time of four life periods are

located at 30, 40 and 58. RJnsDBNs predicts 3 segments with the posterior peaks located at

11 and 21. FLnsDBNs prefers 4 segments with the posterior peaks at 19, 36 and 54, which

happen before the assumed changepoints. And our prediction of the Embryonic→Larval

61



1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments

P
os

te
rio

r P
ro

ba
bi

lit
y

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments

P
os

te
rio

r P
ro

ba
bi

lit
y

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments

P
os

te
rio

r P
ro

ba
bi

lit
y

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points

P
os

te
rio

r P
ro

ba
bi

lit
y 

of
 C

ha
ng

ep
oi

nt
s

Figure 4.8: Comparison of three methods on Arabidopsis T28 data. Left: The posterior prob-
abilities of the numbers of segments (top: FLnsDBNs (λm = 14, λs = 2); middle: RJnsDBNs
(λm = 0.005, λs = 2); bottom: ASnsDBNs). Right: The posterior probabilities of the change
points (FLnsDBNs: black solid line; RnsDBNs: magenta dash-dot line; ASnsDBNs: blue dashed
line).

transition occurs at 19 much earlier than 30. Both ASnsDBNs and RJnsDBNs methods do

not converge well in this fly data set.

We show the reconstructed networks of our approach, those of RJnsDBNs (UNUT), a

stationary directed network predicted by [284], and the non-stationary undirected networks

predicted by [105] in Figure 10 for the purpose of comparison. In addition, we provide the

networks predicted by RJnsDBNs with another setting of KNKT to compare because the net-

works inferred by RJnsDBNs (UNUT) show much difference from other predictions. In the

following, we only compare the results of [105], [284], RJnsDBNs (KNKT) and FLnsDBNs.

These four predictions share many similarities and also show some difference. We find

that the gene msp-300 may play a key role in the cluster of these 11 genes. myo-61f is

only predicted to be a regulated gene by msp-300 in [284], but other three methods show

that myo-61f is another key gene in this cluster. In [284], myo-61f is correlated with twi,

sls, mlc1, mhc and msp-300. In RJnsDBNs (KNKT), myo-61f serves as the regulators of

prm, up and sls. Our approach predicts that myo-61f regulates four genes: sls, prm, actn,

and msp-300. FLnsDBNs, [284] and [105] all agree that there are regulation relationships

between myo-61f and msp300, while RJnsDBNs (KNKT) did not identify this interaction.

Different from the prediction of RJnsDBNs (KNKT), Our approach finds that twi is not

62



separated from other genes and actn serves as the parents of other genes, which is consistent

with the networks in [284]. In Figure 10E, twi is the regulator of sls, and actn regulates sls,

prm and gfl. We also notice that the regulating effects of myo-61f and msp-300 on other

genes intensify over the time. Nearly different from all of three methods, our approach finds

that twi and gfl/lmd are regulators of other genes while only [284] sees twi as a regulator.

gfl/lmd and twi are direct upstream regulators of mef2 [74, 63] that directly regulates some

target myosin family genes at all stages of muscle development [229] , such as mhc and

mlc1. Evidence show the cooperative binding of twi and Mef2 or gfl/lmd and Mef2 to these

target genes are attractive models [229, 74]. It indicates that a co-regulation role of twi

and gfl/lmd with Mef2 to other muscle development genes may exist. The prediction of our

method shows this biological behavior. Currently the reference regulatory network on the

muscle development of Drosophila melanogaster is not available and the relevant biological

literatures are limited. Further biological researches and experiments are needed to verify

the regulatory networks.

63



Chapter 5

Preliminary Work (III):

Non-Stationary Dynamic Bayesian

Networks based on Perfect Simulation

We proposed a novel non-stationary DBNs method [145]. Our method is based on the per-

fect simulation model. We applied this approach for the gene regulatory network inference

on three non-stationary time series data and compared with other two non-stationary DBNs

methods. The experimental results demonstrated that our method outperformed two other

state-of-the-art methods in both computational cost and structure prediction accuracy. The

further sensitivity analysis showed that once converged our model is insensitive to the pa-

rameter, which reduces the uncertainty of the model behavior.

5.1 Introduction

Non-stationary Dynamic Bayesian Network methods are widely used to model the temporal

changes of dependency structures from multivariate time series data [227, 102, 240, 132,

170, 70, 130, 103]. Comparing to traditional DBNs modeling, non-stationary DBNs have

advantages to capture the structural dynamics of networks in various biological systems, such

64



as Neural assemblies in response to visual stimuli [240], morphogenesis in the organisms’ life

cycle [227, 130], adaptive mammalian immune response against infection of virus [102], or

circadian regulation dynamics of plants caused by dramatic changes of outside environment

such as light intensity [102].

Several methods have been developed for constructing non-statio- nary models. For

example, Robinson et al. proposed a discrete non-stationary DBNs method [227] using Re-

versible Jump Markov Chain Monte Carlo (RJMCMC) [100] to sample underlying changing

network structures. Grzegorczy et al. proposed a non-homogeneous continuous Bayesian

network method with a Gaussian mixture mod- el based on the allocation sampler technique

[204]. Grzegorczy et al. improved the convergence of their method using perfect simulation

modeling [77] and reduced the risk of overfitting and inflated inference uncertainty [130] in

their later work [103]. Both Robinson’s and Grzegorczyk’s methods perform change-point

detection and we call them change-point based approaches. Song et al. [240] proposed a

time-varying DBNs (TV-DBNs) method and used a kernel re-weighted l1-regularised auto-

regressive approach for learning the graph structures at each time step. Lebre et al. [170]

proposed a more flexible auto-regressive time varying model called ARTIVA that allows

gene-by-gene analysis. Husmeier et al. [130] introduced inter-time segment information

sharing schemes to address the over-flexibility issue in the ARTIVA approach. Those three

approaches are different from the change-point detection based approaches and fell into the

category of structure learning of constantly varying network over time. In this paper, our

work focuses on the change-point detection modeling for regulatory network dynamics.

There are several limitations of the existing change-points based techniques. First, the

mixture model used by Grzegorczy et al. [102, 103] assumed that the underlying network

structures are invariant over time. Such an assumption is too rigid when changes of network

structures are expected, for example, morphogenesis or embryogenesis [130]. Second, Grze-

gorczy’s method with the improvement on convergence [103] mixed the structure sampling

steps and the perfect simulation steps in the same RJMCMC procedure. The time complex-

65



ity of each perfect simultion step is quadratic to the number of the observations [77]. This

scheme brings extra computational costs on change-point simulation that are proportional

to the number of sampling iterations even if genes are decomposed into groups to alleviate

the computational concern. Third, the RJMCMC sampling approach in Robinson’s work

[227] converges slowly. For example, the results in [100] using RJMCMC did not converge

as pointed out in the subsequent work in [101]. In addition, our experiments show that the

structure prediction accuracy of Robinson’s RJMCMC is low.

We posit that the key computational obstacle for efficient modeling of time series data

with non-stationary DBNs methods is the interplay of change-point detection and structure

inference for each identified time segment. To improve computational efficiency, we designed

an algorithm called ReCursion Non-Stationary Dynamic Bayesian Networks ( RCnsDBNs )

to separate these two essential steps. Our method adopted Fearnhead’s perfect simulation

model [77] for change-point detection. The perfect simulation model was originally developed

for univariate time series data [77] and we modified the algorithm to model our multi-variate

time series data. In particular, we designed an iterative algorithm for the structure inference

and change-point detection. Our method first used the point process [215] as the prior for

the occurrences of change-points and directly simulated the change-points from the posterior

distribution. For each predicted segment, we then used a regular Markov Chain Monte Carlo

(MCMC) method, a revised KNUT (Known Transition Number Unknown Transition Time)

setting in Robinson’s method [227]. Once the algorithm converges, we output the most

likely change-points and a sequence of network structures corresponding to the separated

segments.

There are several advantages for the novel non-stationary DBNs algorithm. First, by

directly simulating the posterior distribution of transition time for graph structures, our

method efficiently reduces the model space and improves the computational performance

both on time and numbers of sampling iterations for covergence. Second, even if a negative

binomial prior is adopted in our point process, the experiments showed that our experimen-

66



tal results are stable within large parameter ranges, which reduces the uncertainty of the

model behavior. Third, different from Grzegorczy’s method [103], our method only needs to

simulate the change-points once for each round of our algorithm. It saves the computational

time. Fourth, Our approach outperform Robinson’s RJMCMC approach on structural pre-

diction accuracy. Even if our discrete model needs the discretization of the data, compared

with Grzegorczyk’s continuous approach, our method showed the competitive performance

for structure estimation.

5.2 Related Work

The change-point detection problems have been extensively investigated in time series mod-

els. Recent work could be found in: PCA-based singular-spectrum transformation models

[192]; non-parametric online-style algorithm via direct density-ratio estimation [153]; two-

phase linear regression model [178]; a hybrid algorithm that relies on particle filtering and

Markov chain Monte Carlo [54]; the RJMCMC method [100]; The perfect simulation model

based on product-partition model [77]; change-point detection by minimizing a penalized

contrast function [169]. These models are widely used in various applications, such as cli-

mate analysis [178], coal-mining disaster analysis [100, 77], well-log analysis [77], the analysis

of abrupt economic agents’ behaviors [54], and asset price volatility [169].

Researchers find that change-point modeling is a very promising way of dealing with

the non-stationarity property [54]. Hence, the current non-stationary DBNs methods em-

ployed different change-point detection techniques to model the underlying change-point

processes of network structures. Robinson et al. [227] applied RJMCMC [100] and used

a discrete model with the assumed multinomial distributed data with the Dirichlet prior.

Using the RJMCMC technique, Lebre et al. [170] proposed a new time varying networks

approach based on first-order auto-regression and Yao’s two-stage regime-SSM model [222].

Their method focuses on local structural changes and performs node-by-node analysis. Fur-

67



ther, in order to address the structural overfitting problem in [170], Dondelinger et al. [70]

and Husmeier et al. [130] introduces information sharing between segments into Lebre’s ap-

proach. Grzegorczy et al. [102, 103] applied the allocation sampler technique and introduced

a continuous-valued DBNs method that approximates the non-stationary property with a

Gaussian mixture model. Based on their work, Ickstadt et al. [132] further generalized

this non-linear BGe mixture model into a broader framework of non-parametric Gaussian

Bayesian networks. In this paper, we incorporate the perfect simulation modeling into our

dynamic bayesian framework and provide a computationally efficient non-stationary DBNs

approach. We chose this change-point detection technique for the following reasons. First,

perfect simulation is based on bayesian analysis and can be easily applied into our MCMC

algorithm. Second, with an approximation in the recursion, the computational complexity

of this method is approximately linear to the number of observations.

5.3 Methods

5.3.1 Perfect Simulation Modeling

Fearnhead used the perfect simulation model to find change-points in the univariate time

series data [77]. We adapted his method to the framework of our dynamic bayesian net-

works, and provided a non-stationary DBNs method to detect the change-points for network

structures in multivariate time series data.

We consider an observed time series data D = {y1, · · · , yT} spanning T time points,

where each observation yi ∈ Rn : 1 ≤ i ≤ T is a n dimensional vector (x1, · · · , xn). The

time series data is subdivided to m segments D = {D1, · · · , Dm}, where m is unknown. We

denote the change-points for these segments as LT = (l0, l1, . . . , lm−1, lm), where l0 = 0 and

lm = T .

We assume the change-points as a point process on positive integers, which is character-

ized by a probability mass function g(t), where t is the distance of two successive change-

68



points. We choose the negative binomial distribution as the distribution for the distance

between two successive change-points and have g(t) =
(
t−1
k−1

)
pk(1 − p)t−k with the parame-

ters k > 0, p > 0 and its corresponding accumulative distribution function G(t) =
∑t

i=1 g(i).

For the special case of the first change-point, we have g0(t) =
∑k

i=1

(
t−1
i−1

)
pi(1 − p)t−i and

G0(t) =
∑t

i=1 g0(i).

Given the assumption of the independence between segments, we calculate the probability

of a sequence of observations after one change-point l: Q(t) = Pr(yt:n|l = t − 1) by using

recursive function below:

Q(t)=
∑T−1

s=1
P (t,s)Q(s+1)g(s+1−t)+P (t,T )(1−G(T−t)). (5.1)

where 2 ≤ t ≤ T , and

Q(1)=
∑T−1

s=1
P (1,s)Q(s+1)g0(s)+P (1,T )(1−G0(T−1)). (5.2)

In Equation 1 and 2, P (t, s) is the simplified notation of P (yt:s|l = t − 1) : 1 ≤ t ≤ T, t ≤

s ≤ T , where the observations yt:s are in the same segment between two change-points t− 1

and s. Similarly, P (1, s) is the simplified notation of P (y1:s|l = 0) : 1 ≤ s ≤ T , where the

observations y1:s are in the same segment between two change-points l0 and s.

Further, based on Q(t), we calculate the probability distribution of the first change-point

below:

P (l1)=P (1,l1)Q(l1+1)g0(l1)/Q(1). (5.3)

where l1 : 1 ≤ l1 ≤ T − 1 is the first change point.

Given li, we calculate the conditional probability P (li+1|li) : li + 1 ≤ li+1 ≤ T − 1 as the

69



following:

P (li+1|li)=P (li+1,li+1)Q(li+1)g(li+1−li)/Q(li+1). (5.4)

And the probability of no more change-point is given as:

P (T |li)=P (li+1,T )(1−G0(T−li−1))/Q(li+1). (5.5)

Finally, with the probability distribution of l1 and conditional distribution of li+1 given

li, we directly simulate the change-point samples and compute the posterior probability

distributions P (LT |T ) and P (m|T ). Due to the limitation of the space, we omitted the

mathematical derivation and proofs. More technical details are available on [77]. One of

the key computations in the simulation procedure is to compute the probability P (yt1:t2|l =

t1 − 1) : 1 ≤ t1 ≤ T, t1 ≤ t2 ≤ T . By assuming the i.i.d. observations in a single segment

and the conjugate priors ρ(θ) on the parameters θ associated with each segment, Fearnhead’s

work provides a closed form of solution for P (yt1:t2|l = t1 − 1) =
∫ ∏t2

i=t1 f(yi|θ)ρ(θ)dθ. In

the analysis of the well-log data, he assumed the normally distributed observations: yi ∼

N(µi, σ
2) with the fixed variance σ2 and a normal prior for the mean µi. In the following we

discuss our solutions both under the static and dynamic bayesian network frameworks.

Perfect simulation modeling in bayesian networks. Bayesian networks (BNs) are

a special case of probabilistic graphic models. A static BN is defined by an acyclic directed

graph G and a complete joint probability distribution of its nodes P (X) = P (X1, . . . Xn).

The graph G : G = {X,E} contains a set of variables X = {X1, . . . , Xn}, and a set of

directed edges E, defining the causal relations between variables. With a directed acyclic

graph, the joint distribution of random variables X = {X1, . . . , Xn} are decomposed as

P (X1, . . . , Xn) =
∏

i P (Xi|πi), where πi are the parents of the node (variable) Xi.

We assume that the observations inside one segment are independent. In each segment

there is one graph Gh : 1 ≤ h ≤ m that dominates the segment. We denote yt1:t2 as D∗
t1:t2

70



and calculate P (D∗
t1:t2|l = t1− 1) as:

P (D∗
t1:t2|l=t1−1)=

∑
G
P (yt1:t2|l=t1−1,G)P (G) (5.6)

=
∑

G
P (G)

∏t2

j=t1
P (yj |G)=

∑
G
P (G)

∏t2

j=t1

∏
i
P (xj

i |πxi )

=
∑

G
P (G)

∫
P (Dt1:t2|G,ΘG)ρ(ΘG|G)dΘG

ΘG are the parameters associated with the data Dt1:t2 corresponding to G. ρ(ΘG|G) is the

probability density function of ΘG.

Under the assumption that the data are complete and multinomially distributed with a

Dirichlet prior on the parameters ΘG, we have the BDeu [117] solution to P (yt1:t2|l = t1−1):

P (D∗
t1:t2|l=t1−1,G)=

∏n

i=1

∏qi
j=1

Γ(αij)

Γ(αij+Nij)
(5.7)

∏ri
k=1

Γ(αijk+Nijk)

Γ(αijk)

ri is the number of possible discrete values of xi. qi is the number of configurations of parents

πi for the variable xi. Nijk is the times that xi had value k. Nij =
∑ri

k=1Nijk. αijk and αij are

the hyperparameters for Dirichlet distribution. αijk is assumed to be uniformly distributed

inside a segment and is set to αijk = α/(riqi). The equivalent sample size α is set to 1.

In order to calculate P (D∗
t1:t2|l = t1 − 1), we need to provide a model space M for G.

We use MCMC to simulate M. Given the collected sample size NM, we approximate the

calculation of Equation 6 as follows:

P (D∗
t1:t2|l=t1−1)=

∑NM
i=1

1
NM

P (D∗
t1:t2|l=t1−1,G) (5.8)

Perfect simulation modeling in dynamic bayesian networks. The topology of

bayesian networks must be a directed acyclic graph and hence could not be used to model

the case where two nodes may be dependent on each other. As an extension of BNs to

model time series data, Dynamic Bayesian Networks (DBNs) lift the limitation of directed

71



acyclic graph by incorporating temporal dependence in constructing bayesian networks. It

is not straightforward to extend the solution in BNs to modeling DBNs mainly due to that

neighboring observations are not independent given the model parameters. Below we develop

a heuristic and provide a solution for P (D∗
t1:t2|l = t1− 1) as follows.

We set the lag value τ = 1 and assume the segments are overlapped. For each segment

Dh : 1 < h ≤ m, the length of overlapped area with the previous segments D1, · · · , Dh−1

is equal to the lag value τ = 1. For D1, there are no previous segments and we add

τ = 1 additional y1s at the beginning of D1. Given the transition time points LT , each

segment of observations Dh = {ylh−1−τ+1, · · · , ylh}, where yi = y1 when i ≤ 0. We denote

{ylh−1+1, · · · , ylh} as D∗
h and {ylh−1−τ+1, · · · , ylh−1

} as D∗c
h , and have Dh = {D∗

h, D
∗c
h }. We

take a heuristic to assume that D∗c
h is independent of Gh, and that P (D∗c

h ) is always equal

to 1. Similarly we denote yt1:t2 as D∗
t1:t2, yt1−τ :t1−1 as D∗c

t1:t2, and Dt1:t2 = {D∗
t1:t2, D

∗c
t1:t2}. In

each segment, there is one graph Gh : 1 ≤ h ≤ m that dominates the segment.

With the assumption that

P (Dc
h)=


1 if Dc

h = D∗c
h

0 otherwise

, we have Theorem 1

Theorem 3.

P (D∗
h)=P (D∗

h|D
∗c
h )=P (Dh) (5.9)

Proof.

P (D∗
h)=

∑
Dc
h
P (D∗

h|D
c
h)P (Dc

h)

=P (D∗
h,D

∗c
h )=P (Dh)=P (D∗

h|D
∗c
h )P (D∗c

h )=P (D∗
h|D

∗c
h )

72



With Theorem 1, we have

P (D∗
t1:t2|l=t1−1)=

∑
G
P (D∗

t1:t2|l=t1−1,G)P (G) (5.10)

=
∑

G
P (D∗

t1:t2|D∗c
t1:t2,G)P (G)

=
∑

G
P (G)

∫
P (D∗|Dc,G,ΘG,T )ρ(ΘG|G)dΘG

ΘG are the parameters associated with the data Dt1:t2 corresponding to G. ρ(ΘG|G) is the

probability density function of ΘG.

The assumption of the multinomially distributed data with the Dirichlet prior leads to

the same solution (BDeu metric) of the closed form expression of the marginal likelihood

P (Dt1:t2|l = t1− 1, G) in Equation 7.

Similarly as bayesian networks, we use MCMC to simulateM for {G}. Our experimental

study shows that our methods in both BNs and DBNs versions output the similar results

for the distributions of change-points.

5.3.2 Structure Learning of Non-stationary Bay- esian Networks

Given an observed time series data D, the structure learning problem of DBNs is equal to

maximizing the posterior probability of the network structure G.

By the Bayes’ rule, the posterior probability is expressed as the following:

P (G|D,T )=
P (D|G,T )P (G|T )

P (D|T )
(5.11)

Given a non-stationary time series data, we need to find a sequence of network structures

GT = (G1, . . . , Gm), m segments, and a transition vector LT , the posterior probability in

73



Equation 11 is replaced by Equation 12:

P (GT ,LT ,m|D,T )=
P (D|GT ,LT ,m,T )P (GT ,LT ,m|T )

P (D|T )
(5.12)

P (D|T ) is treated as a constant, and then

P (GT ,LT ,m|D,T ) (5.13)

∝P (D|GT ,LT ,m,T )P (GT ,LT ,m|T )

∝P (D|GT ,LT ,m,T )P (GT |LT ,m,T )P (LT |m,T )P (m|T )

In the following discussion, we specify the formula for calculating each component of Equation

13.

We are using the same assumption in [227] that the networks change smoothly over

time. We use the exponential priors on the change of network structures. We transform

the form of the sequence of graph structures GT : GT = (G1, . . . , Gm) into GT : GT =

(G1,△G1, . . . ,△Gm−1), where △Gh : 1 ≤ h ≤ m− 1 is the change of edges between Gh and

Gh+1. We calculate P (GT |m,T ) as follows.

P (GT |LT ,m,T )=P (G1,△G1,...,△Gm−1) (5.14)

∝P (G1)
∏m−1

h=1
e−λssh∝P (G1)e

−λs
∑m−1

h=1
sh∝P (G1)e−λsS

,where S : S =
∑m−1

h=1 sh, and sh is the number of edge change between Gh+1 and Gh. We

have no prior knowledge on P (G1) and see the uniform distribution as the prior.

We assume that the data are complete and multinomially distributed with a Dirichlet

prior on the parameters. We calculate P (Dh|Gh, T ) of each segment by following Equation

74



7:

P (Dh|Gh,T ) (5.15)

=
∫

P (Dh|Gh,ΘGh
,T )ρ(ΘGh

|Gh)dΘGh

=
∏n

i=1

∏qih
j=1

Γ(αij)

Γ(αij+Nij(Ih))

∏ri
k=1

Γ(αijk+Nijk)(Ih)

Γ(αijk)

We denote Ih as the segment h, ΘGh
as the parameters corresponding to Gh, ri as the number

of possible values of xi, and qih as the number of configurations of parents πi in Ih. We let αijk

and αij to be the hyperparameters for Dirichlet distributions applied in Ih. αijk is uniformly

distributed inside Ih and set to αijk = α/(riqih). We set the equivalent sample size α equal

to 1. We denote Nijk(Ih) as the times that xi had value k in Ih and Nij(Ih) =
∑ri

k=1Nijk(Ih).

Theorem 4. With Theorem 1 and the Markov property, the marginal likelihood P (D|GT ,m, T )

is expressed as below:

P (D|GT ,LT ,m,T )=
∏m

h=1
P (Dh|Gh,m,T ) (5.16)

Proof.

P (D|GT ,LT ,m,T )

=P (D∗
m|D∗

1 ,··· ,D
∗
m−1,Gm,m,T )···P (D∗

1 |G1,m,T )

=
∏m

h=1
P (D∗

h|D
∗c
h ,Gh,m,T )=

∏m

h=1
P (Dh|Gh,m,T )

With Theorem 2 and Equation 15, we get the extended BDeu metric:

P (D|GT ,LT ,m,T )=
∏m

h=1
P (Dh|Gh,m,T ) (5.17)

=
∏n

i=1

∏m

h=1

∏qih
j=1

Γ(αij)

Γ(αij)+Nij(Ih))

∏ri
k=1

Γ(αijk+Nijk(Ih))

Γ(αijk)

75



We use the perfect simulation modeling to calculate the posterior probability distributions

of P (LT |m,T ) and P (m|T ). We choose the most likely m, fix the number of segments, and

have P (m|T ) = 1. We use the sampling method to collect {GT} and will discuss the details

in the subsequent section.

5.3.3 MCMC Sampling

Considering the fact that the gene expression data are usually sparse, which makes the poste-

rior probability over structures to be diffuse [129], we choose sampling approaches rather than

heuristic methods to search structural models, where a group of most likely structures could

explain data better than a single one. In addition, the sampling methods also have the ad-

vantage to approximate the model spaceM for change-points simulation. We select MCMC

as our sampling approach to collect GT samples and compute the posterior probabilities of

edges {es,i,j|1 ≤ s ≤ m, 1 ≤ i, j ≤ N} in GT . We use every single GT sample to calculate

the marginal probability P (Dt1:t2|l = t1 − 1, GT ) of successive observations yt1:t2 based on

Equation 17. With a simulated sample space {GT} by MCMC, we get P (Dt1:t2|l = t1 − 1)

based on Equation 8 and further calculate the whole conditional probability distribution of

change-points.

We design our algorithm based on the following considerations. First, we choose the

heuristic search instead of the MCMC simulation to initialize G with only a single segment at

the beginning of the algorithm. With the non-stationary nature, the data consists of multiple

segments. And the possible model space and its distribution in each segment are different.

In this case, MCMC may not provide a good approximation of M and is computationally

expensive. Hence, we use the heuristic search to initializes a single G to do the perfect

simulation and such change does not affect the prediction performance. In general, we take

much smaller number of heuristic steps compared with MCMC, and the number of steps

is proportional to the size of nodes. The detailed configurations of heuristic steps could be

found in Section 4.

76



Second, we use KNUT move set instead of the KNKT (Known Transition Number Known

Transition Time) move set [227] containing six move types, MT1-MT6 . Induced by the

limitation of the initialization of a single G at the beginning, the true distributions of P (m)

and P (LT ) are doubtful after the first round of perfect simulation. Simply using fixed

change-points will distort the simulated model space. By bringing the move to shift the

change-points into the move set, we allow MCMC not only to converge for LT but also to

provide a model space approximately at every time point. With this method, we improve

the quality ofM and have our algorithm converged. The procedure for our method is shown

in the Algorithm as follows.

RCnsDBNs Algorithm

Input: Time series Data D, parameters p, k and λs

Output: P (LT ), P (m), and P ({es,i,j})
Begin
Use heuristic search and select a single graph G.
Run perfect simulation to sample change-points.
Calculate the distributions P (m) and P (LT ).
Select the most likely m and initialize GT with G.
while P (m), P (LT ) and P ({es,i,j}) not converged do
Run MCMC and collect the samples {GT}.
Simulate the change-point samples.
Calculate the distributions P (m), P (LT ), and P ({es,i,j}).
Select the most likely m and re-initialize GT .

end while
End

77



5.4 Experimental Study and Evaluation

We performed all the experiments on Intel Xeon 3.2 Ghz EM64T processors with 4 GB

memory. We implemented our method RCnsDBNs in Java.

We compare three approaches: 1) our approach (RCnsDBNs), 2) reversible jump Markov

chain Monte Carlo Non-Stationary Dynamic Bayesian Networks (RJnsDBNs) [227], 3) Al-

location Sampler Non-Stationary Dynamic Bayesian Networks (ASnsDBNs) [102, 103]. For

RJnsDBNs, we use the default setting of unknown numbers and times of transitions (UNUT)

in all of the data sets. RJnsDBNs is implemented in Java. ASnsDBNs is implemented in

Matlab. In addition, we show the results of our method in BNs version denoted as RCnsBNs

( ReCursion Non-Stationary Bayesian Networks). Both two versions of our method find very

similar results on the posterior distributions of change-points. We grid-search the parame-

ters for RCnsDBNs and RJnsDBNs for the best performance on change-point and structure

estimation. For ASnsDBNs, we choose Kmax = 10 for all experiments that we believe to

satisfy the number of different components of the mixture vector in various data sets.

Our experimental study is based on three data sets: (i) Synthetic data set, (ii) Bone

Marrow-derived Macrophages gene expression time series data (Macrophages data set), and

(iii) Circadian regulation in Arabidopsis Thaliana gene expression time series data (Ara-

bidopsis data set ). We evaluate three methods from two aspects: computational perfor-

mance on convergence and structure prediction accuracy.

Convergence Rate and Computational Time. ASnsDBNs with perfect simulation

modeling (ASnsDBNs-PSM) [103] improves ASnsDBNs [102] on convergence. It selects pa-

rameters to give best approximation to the outputs of ASnsDBNs. Hence, we choose ASns-

DBNs -PSM for computational performance comparison. We follow Grzegorczyk’s work in

[103] and evaluate ASnsDBNs-PSM and our method with the proportion of edges denoted

by η for which potential scale reduction factors (PSRFs) [88] lies below the pre-defined

threshold. PSRFs=1 shows perfect convergence and that PSRFs<1.1 is seen as the suffi-

cient condition for convergence [103, 88]. 0 ≤ η ≤ 1 and higher η values indicate better

78



convergence.

RJnsDBNs does not output graph samples. We use the variation of edge posterior prob-

abilities (VEPP) to measure the convergence of its output. V EPP = 1
m·N ·N

∑m
s=1

∑N
i=1

∑N
j=1

|P (eI+∆I
s,i,j )−P (eIs,i,j)|
P (eIs,i,j)

, where I is the number of iterations continuously sampling in MCMC, and

P (eIs,i,j) is the posterior probability of an edge ei,j in the graph Gs that dominates the sth

segment computed from I iterations. Once MCMC converges, |P (eI+∆I
s,i,j ) − P (eIs,i,j)| → 0

with I → +∞. Hence, VEPP values close to 0 indicate that a MCMC chain converges to

a stationary distribution. We use a pre-defined threshold σ. When V EPP < σ, we decide

that MCMC converges and calculate the computational time.

Structure Prediction Accuracy. To compare the inferred structure results from dif-

ferent data sets, we follow the evaluation method introduced in [129, 262, 102]. For the

synthetic data set, we compare the inferred network structures with the true networks. For

each real data set, we first collect gold standard reference networks as the ground truth. For

the Macrophages data set, such reference networks are available in [148, 224, 102]. For the

Arabidopsis data set, we collect the network information from [183, 228, 62, 208]. In case

where we have ground truth network structure (the Bone Marrow data set and Arabidopsis

data set), we use the area under receiver operating characteristic curve (AUROC) values to

evaluate the performance. In addition, for each data set, we show the posterior distribution

of the number of segments and the locations of change-points. Before we discuss the details

of experimental results, we present the characteristics of our data set first below.

5.4.1 Data Sets

We evaluate our method RCnsDBNs on a synthetic data and two gene expression data sets

used in [227, 102]. We preprocess the original gene expression data sets by following Zhao’s

work [283]. We set the values of a missed time point with the mean of its two neighbors;

i.e., Xi,t = (Xi,t−1 +Xi,t+1)/2 if 1 < t < T . If the missed values are at the beginning or end,

simply set the same value as its neighbor; i.e., Xi,t = Xi,t+1 if t = 1 or Xi,t = Xi,t−1 if t = T .

79



1 3

5 2 4

1-20

1 3

5 2 4

21-40

1 3

5 2 4

41-60

1 3

5 2 4

61-80

Figure 5.1: The synthetic networks.

In the following, we show the details of each data set.

Synthetic Data. We created a synthetic time series data with 80 time points and

binary valued observations. It was generated by a sequence of 5 node networks with 3-4 edge

changes between successive segments. The change-points of the graph structures happened

at times 20, 40, 60. We showed the true networks in Figure 5.1.

Bone Marrow-derived Macrophages Gene Expression Data. We use the Macrophage

data sets previously investigated in [102]. The data sets contain three genes, Irf1, Irf2 and

Irf3, related to Interferon regulatory factors (IRFs), proteins central to the mammalian in-

nate immunity [120, 224]. The Macrophage data sets were sampled from different conditions:

(I) Infection with Cytomegalovirus (CMV), (II) Treatment with Interferon Gamma (IFNγ),

and (III) Infection with Cytomegalovirus after pretreatment with IFNγ (CMV + IFNγ).

Each data set has 25 time points collected with the interval 30 minutes. We follow Grzegor-

czyk’s work [102] and use Irf2 ↔ Irf1 ← Irf3 as the gold standard. We assume that the

network is invariant over time.

Arabidopsis Thaliana Circadian Regulation Gene Expression Data. We use the

Arabidopsis Thaliana Circadian data investigated in [102]. The data sets consist of 9 genes,

LHY, CCA1, TOC1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3. The group of genes create

transcriptional feedback loops and are critical to understand the internal clock-signalling

network of plant. The Arabidopsis data are sampled from two light-dark conditions: (I)

10h:10h light/dark cycle and (II) 14h:14h light/dark cycle. Each data set contains 13 time

points collected with the interval of 2 hours. We build a gold standard network based on

the biological literatures [183, 228, 62, 208, 110, 190]. In this network, CCA1 and LHY

proteins directly bind to the promoter of TOC1 to represses the expression of TOC1. The

80



pseudo-response regulators PRR5 and PRR9 are activated by CCA1 and LHY and repress

CCA1 and LHY subsequently. G1 improves the expression of TOC1. ELF4 is repressed by

CCA1. For a detailed referred graph figure, please refer to our previous work [141].

5.4.2 Convergence and Computational Performance

We first compared the computational performance between our method RCnsDBNs and

ASnsDBNs-PSM. The curves of fraction of edges with PSRFs<1.04 on two methods for

Thaliana T20 data is showed in Figure 5.2 and the VEPP curves in Figure 5.3. We cal-

culated the PSRFs and VEPP scores from 10 independent MCMC chains. We found that

RCnsDBNs and ASnsDBNs-PSM have the similar convergence rate measured in terms of

MCMC sampling iterations. However, for 250,000 iterations, it takes ASnsDBNs-PSM more

than 350 hours while RCnsDBNs only needs less than 1 minute. Even considering the

fact that two algorithms are implemented in different programming languages (RCnsDBNs

in java and ASnsDBNs-PSM in Matlab), compared with ASnsDBNs-PSM, our method has

much better computational efficiency.

50000 70000 90000 110000 130000 150000 170000 190000 210000 230000 250000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Iterations

Fr
ac

tio
n 

of
 e

dg
es

PSRF<1.04

Figure 5.2: The curves of fraction of edges with PSRFs<1.04 on RCnsDBNs and ASnsDBNs-
PSM for Thaliana T20 data. RCnsDBNs: black solid line ; ASnsDBNs-PSM: blue dashed
line.

For the comparison between RJnsDBNs and our approach, we set σ = 0.05 for the

convergence of VEPP values and listed the number of iterations and computational time

in Table 5.1. In multiple data sets, RCnsDBNs converges much faster than RJnsDBNs.

Compared with RJnsDBNs , RCnsDBNs got 6 folds computational improvement on CMV

data, 6 folds on CMV + IFNγ data, 9 folds on IFNγ data. On Arobidopsis microarray

81



90000 110000 130000 150000 170000 190000 210000 230000 250000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sampling Iterations

VE
PP

Figure 5.3: The VEPP curves on RCnsDBNs and ASnsDBNs-PSM for Thaliana T20 data.
RCnsDBNs: black solid line ; ASnsDBNs-PSM: blue dashed line.

0 1 2 3 4 5 6 7 8

x 10
4

0

0.05

0.1

sampling iterations

av
era

ge
 ch

an
ge

 of
 pr

ob
. o

f e
dg

es

Figure 5.4: The VEPP curves for CMV data. RCnsDBNs (p = 0.01, λs = 2): black solid
line ; RJnsDBNs (λm = 0.65, λs = 2): magenta dash-dot line.

Table 5.1: The comparison of computational performance

N RJnsDBNs I CT RCnsDBNs I T I CT speedup

5 Synthetic Data 500, 000 34.28m Synthetic Data 500, 000 17.91m 400, 000 14.36m 2.39

(λm =, λs = 2)

3 CMV 50, 000 7.316s CMV 50, 000 4.333s 10, 000 1.127s 6.49

(λm = 0.65, λs = 2)

3 IFNγ 80, 000 15.962 IFNγ 80, 000 6.615s 17, 500 1.646s 9.70

(λm = 0.001, λs = 2)

3 CMV + IFNγ 130, 000 26.152s CMV + IFNγ 130, 000 16.223s 25, 000 4.029s 6.49

(λm = 1, λs = 2)

9 ArobidopsisT20 30, 000 6.274s ArobidopsisT20 50, 000 5.363s 100, 000 10.314s 0.61

(λm = 0.0005, λs = 2)

9 ArobidopsisT28 30, 000 6.048s ArobidopsisT28 50, 000 15.26s 100, 000 28.325s 0.21

(λm = 0.005, λs = 2)

N is the number of genes in the data sets. I is the number of iterations. T is the
computational time. CT is the computational time for convergence. σ = 0.05 is
used to decide the convergence of the results.

data, RJnsDBNs took less time than RCnsDBNs. However, it failed to detect any meaningful

change-point as RCnsDBNs and ASnsDBNs did on Arobidopsis data. In addition, we showed

the VEPP curves of two approaches for CMV data in Figure 5.4.

82



5.4.3 Stability of Results

We use k = 1 for all the experiments because the gene expression data usually has limited

time points and larger k values eliminate short segments. The value of parameter p is adjusted

for the purpose of the convergence of results for different dominant segment numbers m. We

grid-search the values of p between 0.00001 ∼ 0.5 for the effective range on the preferred

segmentation. For the synthetic data, it has four segments (m = 4). For three Macrophages

data, we selected m = 1 based on the assumption of a single IRFs network structure with

varying parameters [102]. For Arobidopsis T20 data, most of the p range leads to m = 1.

Finally, for Arobidopsis T28 data, we chose m = 2 with the consideration of the external

light/dark cycle condition.

Table 5.2: The effective range of parameter p for RCnsDBNs

effective parameter range of p
Synthetic (m=4) 0.02 ∼ 0.032
CMV (m=1) ≤ 0.009
CMV+IFNγ (m=1) ≤ 0.0006
IFNγ (m=1) ≤ 0.0001
Arobidopsis T20 (m=1) ≤ 0.5
Arobidopsis T28 (m=2) 0.18 ∼ 0.23

5.4.4 Structure Prediction and Change-point Detection

In the following, we will show the results of predicted structures and detected change-points.

The results on synthetic data. We compared two discrete models, RCnsDBNs and

RJnsDBNs, on synthetic data. RCnsDBNs totally runs 16 rounds to get converged, and each

round uses 5,000 iterations for burn-in and then takes additional 20,000 iterations to collect

samples ; RJnsDBNs runs 100,000 iterations for burn-in and then takes additional 400,000

iterations to collect samples. RCnsDBNs initializes G with additional 1000 heuristic search

steps.

We showed the predicted posterior distributions on the numbers of segments and change-

83



Table 5.3: The AUROC values of RCnsDBNs on synthetic data

Synthetic Data
RCnsBNs G1 : 1;G2 : 0.6078;

G3 : 0.4706;G4 : 0.6078
RCnsDBNs G1 : 0.9688;G2 : 0.6719;

(equivalence class considered) G3 : 0.5938;G4 : 0.6406
TP, true positive; FP, false positive; TN, true negative;
FN, false negative.
Sensitivity = TP/(TP+FN).
Specificity = TN/(TN+FP).
Complementary Specificity = 1- Specificity =
FP/(TN+FP).
The ROC curves are plotted with the Sensitivity scores
against the corresponding Complementary Specificity
scores.

points in Figure 5.5. RCnsDBNs correctly identified 4 segments and its predicted change-

points are close to the true times at 20, 40, and 60 while RJnsDBNs failed to identify

meaningful change-points. The AUROC scores of predicted structures by RCnsDBNs is

showed in Table 5.3. When the equivalence class of bayesian network structures [53] were

considered, the AUROC scores of all segments were increased, which were shown in the same

table.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839
0

0.2

0.4

0.6

0.8

1

Number of Segments (m)

P(m
)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839
0

0.2

0.4

0.6

0.8

1

Number of Segments (m)

P(m
)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points (t)

P(
t)

Figure 5.5: Comparison of two methods on the synthetic data. Up: The posterior probabilities
of the numbers of segments P(m) (top: RCnsDBNs (p = 0.031, λs = 0.5); bottom: RJnsDBNs
(λm = 0.4, λs = 0.5)). Low: The posterior probabilities of the change points P(t) ( RCnsDBNs:
black solid line; RJnsDBNs: magenta dash-dot line).

The results on Macrophages data. On the CMV Macrophages data, RCnsDBNs

totally runs 4 rounds to get converged, and each round uses 500 iterations for burn-in and

then takes additional 2,000 iterations to collect samples ; RJnsDBNs runs 10,000 iterations

for burn-in and then takes additional 40,000 iterations to collect samples. On the CMV +

IFNγ Macrophages data, RCnsDBNs totally runs 5 rounds to get converged, and each round

uses 1,000 iterations for burn-in and then takes additional 4,000 iterations to collect samples

84



; RJnsDBNs runs 26,000 iterations for burn-in and then take additional 104,000 iterations

to collect samples. On the IFNγ Macrophages data, RCnsDBNs totally runs 7 rounds to

get converged, and each round uses 500 iterations for burn-in and then takes additional

2,000 iterations to collect samples ; RJnsDBNs runs 16,000 iterations for burn-in and then

take additional 64,000 iterations to collect samples. In both data sets, ASnsDBNs runs

10,000 iterations for burn-in and then take additional 40,000 iterations to collect samples.

RCnsDBNs initializes G with additional 100 heuristic search steps.

In Figure 5.6, 5.7, and 5.8, we show the posterior probabilities of the numbers of segments

and change-points on Macrophages data sets.

For the CMV data, we observe that ASnsDBNs clearly identifies a dominant 3-segment in

the data set while the posterior probabilities produced by RJnsDBNs are almost flat. There

is a consensus among three methods that the most probable change-point occurs around the

location 5. The results of three methods are consistent with the biological phenomenon that

the simultaneous responses of Macrophages happen under the attack of Cytomegalovirus

[102]. In order to assess the network prediction performance, we show the AUROC scores in

Table 2. We find that all methods perform well in the CMV data with the AUROC scores

equal to 1.

For the CMV +IFNγ data, both RJnsDBNs and ASnsDBNs methods identify 1 segment,

which [102] explained as a coexistence state between virus and its host cell [22, 102]. And

their posterior probabilities are flat. Different from these two methods, RCnsDBNs found

two posterior peaks at 3 and 8. Such finding indicates the coexistence state may not happen

at the beginning under both the IFNγ treatment and invasion of virus. In Table 4, we find

that RCnsDBNs and ASnsDBNs show a much better network prediction with the AUROC

score equal to 0.6667 while in RJnsDBNs the AUROC score is equal to 0.2222.

For the IFNγ data, there is a postulated transition with the immune activation under

the treatment of IFNγ. Both RJnsDBNs and ASnsDBNs infer 1 segments. RJnsDBNs and

ASnsDBNs identify a same posterior peak at the location around 5. RCnsDBNs finds two

85



posterior peaks of transition time at 9 and 13. On the assessment of the predicted network

structures, the AUROC scores are 0.7778 in RCnsDBNs and RJnsDBNs, and 0.6667 in

ASnsDBNs.

For each Macrophages data set using RCnsDBNs and RJnsDBNs methods, we find that

the posterior probability distributions of any edge do not change much across different seg-

ments. This finding is consistent with the assumption that the underlying network structure

does not change through the time.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10 1
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points (t)

P(
t)

 

 

RJnsDBNs

ASnsDBNs

RCnsBNs

RCnsDBNs

Figure 5.6: Comparison of four methods on CMV Macrophage data. Up: The posterior probabili-
ties of the numbers of segments P(m) (from the top to the bottom: RCnsBNs (λs = 2), RCnsDBNs
(λs = 2), RJnsDBNs (λm = 0.65, λs = 2), and ASnsDBNs). Low: The posterior probabilities of
the change points P(t).

The results on Arabidopsis data. On the Arabidopsis data, RCnsDBNs totally

runs 10 rounds to get converged, and each round uses 5,000 iterations for burn-in and

Table 5.4: Comparison of AUROC values on Macrophage data

CMV IFNγ CMV + IFNγ

RJnsDBNs 1 0.7778 0.2222
ASnsDBNs 1 0.6667 0.6667
RCnsBNs 1 0.5556 0.6667
RCnsDBNs 1 0.7778 0.6667

86



1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

 

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time Points (t)

P(
t)

 

 

RJnsDBNs

ASnsDBNs

RCnsBNs

RCnsDBNs

Figure 5.7: Comparison of four methods on CMV + IFNγ Macrophage data. Up: The posterior
probabilities of the numbers of segments P(m) (from the top to the bottom: RCnsBNs (λs =
2), RCnsDBNs (λs = 2), RJnsDBNs (λm = 1, λs = 2), and ASnsDBNs). Low: The posterior
probabilities of the change points P(t).

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

 

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time Points (t)

P(
t)

 

 

RJnsDBNs

ASnsDBNs

RCnsBNs

RCnsDBNs

Figure 5.8: Comparison of four methods on IFNγ Macrophage data. Up: The posterior probabili-
ties of the numbers of segments P(m) (from the top to the bottom: RCnsBNs (λs = 2), RCnsDBNs
(λs = 2), RJnsDBNs (λm = 0.001, λs = 2), and ASnsDBNs). Low: The posterior probabilities of
the change points P(t).

87



then takes additional 20,000 iterations to collect samples ; RJnsDBNs runs 6,000 iterations

for burn-in and then take additional 24,000 iterations to collect samples; ASnsDBNs runs

990,000 iterations for burn-in and then take additional 10,000 iterations to collect samples.

Considering larger size of variables and thereafter the larger model space compared with

other two data sets, RCnsDBNs takes more heuristic search steps and initializes G with

additional 10000 heuristic iterations.

In Figure 5.9 and 5.10, we show the posterior distributions of the numbers of segments

and changepoints on two Arabidopsis data sets. For the Arabidopsis T20 data, the dominant

samples in RJnsDBNs and ASnsDBNs are respectively 2 and 3 segments. For the Arabidopsis

T28 data, RJnsDBNs infers 1 segment and ASnsDBNs infers 5 segments. In both data sets,

we find that the difference between the posterior peaks of changepoints and the time points

nearby in RJnsDBNs are not noticeable. Hence, for this data set, we only use a single

network in RJnsDBNs to compare with other methods. Using ASnsDBNs, the posterior

peaks of change-points on T20 data are 1, 5 and those on T28 are 2, 7, 10. In [102], the

results of ASnsDBNs are explained as a phase shift incurred by different dark/light cycles.

Our method RCnsDBNs had the same finding by identifying the peaks at 5, 7, and 10 on

T20 data and the peaks at 2, 6, and 9 on T28 data. And in addition, RCnsdBNs finds a

peak around 10 on T20 data. This time point is exactly the beginning of the new light/dark

cycle.

We evaluated the network reconstruction accuracy of three methods by comparing with

the reference network showed in Section 6.2.1. We show the AUROC scores in Table 5.5.

Our method outperforms RJnsDBNs in both datasets and has competitive performance on

structure prediction accuracy against ASnsDBNs.

88



Table 5.5: Comparison of AUROC values on Arabidopsis data

Arabidopsis T20 Arabidopsis T28

RJnsDBNs 0.5035 0.3893

ASnsDBNs 0.5929 0.5641

RCnsBNs G1 : 0.4856 G1 : 0.4856;G2 : 0.5315

RCnsDBNs G1 : 0.5183 G1 : 0.5925;G2 : 0.5979

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points (t)

P(
t)

 

 

RJnsDBNs

ASnsDBNs

RCnsBNs

RCnsDBNs

Figure 5.9: Comparison of four methods on Arabidopsis T20 data. Up: The posterior probabilities
of the numbers of segments P(m) (from the top to the bottom: RCnsBNs (λs = 2), RCnsDBNs
(λs = 2), RJnsDBNs (λm = 0.0005, λs = 2), and ASnsDBNs ). Low: The posterior probabilities of
the change points P(t).

89



1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Number of Segments (m)

P(
m)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Points (t)

P(
t)

 

 

RJnsDBNs

ASnsDBNs

RCnsBNs

RCnsDBNs

Figure 5.10: Comparison of four methods on Arabidopsis T28 data. Up: The posterior probabilities
of the numbers of segments P(m) (from the top to the bottom: RCnsBNs (λs = 2), RCnsDBNs
(λs = 2), RJnsDBNs (λm = 0.005, λs = 2), and ASnsDBNs). Low: The posterior probabilities of
the change points P(t).

90



Chapter 6

Preliminary Work (IV): Bayesian

Network Structure Learning with

Text Priors

In this chapter, we will present a new Bayesian Network structure learning method with text

priors that are encoded by non-parametric hierarchical topic trees. Our method retrieved

structure prior information from unstructured text data. And different from the existing

reverse engineering methods with text priors [175, 243, 86], our method does not need

standard glossary or ontology systems.

6.1 Methods

6.1.1 Structure Inference of Bayesian Networks

Bayesian networks (BNs) are a special case of probabilistic graphic models. A static BN is

defined by a graph structure G, and a complete joint probability distributions of its nodes

P (X) = P (X1, . . . , Xn). The structure G : G = (X,E) is an directed acyclic graph (DAG),

which contains a set of variables X = {X1, . . . , Xn}, and a set of directed edges E, which

91



define the causal relations between variables. Since the graph structures of static BNs are

directed acyclic, the joint distributions can be decomposed as P (X1, . . . , Xn) =
∏

i P (Xi|πi),

where πi is the parents of the node (variable) Xi.

Given an observed data x, the structure inference problem of BNs is equal to maximize

the posterior probability of the network structure G. By the Bayes’ rule, the posterior

probability is expressed as following:

P (G|x) = P (x|G)P (G)

P (x)
. (6.1)

When P (x) is treated as a constant, Equation 6.1 further extends to

P (G|x) ∝ P (x|G)P (G). (6.2)

We have no prior knowledge on P (G) and see the uniform distribution as the prior.

In this paper, we assume that the observations are independent, complete and multi-

nomially distributed with a Dirichlet prior on the parameters ΘG, we have the BDeu [117]

solution to P (x|G):

P (x|G) =
∫
f(x|G,ΘG)ρ(ΘG)dΘG

=
∏n

i=1

∏qi
j=1

Γ(αij)

Γ(αij+Nij)

∏ri
k=1

Γ(αijk+Nijk)

Γ(αijk)
. (6.3)

ΘG are the parameters associated with the data x corresponding to G. ρ(ΘG) is the prob-

ability density function of ΘG. ri is the number of possible discrete values of Xi. qi is the

number of configurations of parents πi for the variable xi. Nijk is the times that Xi had

value k. Nij =
∑ri

k=1Nijk. αijk and αij are the hyperparameters for Dirichlet distribution.

αijk is assumed to be uniformly distributed and is set to αijk = α/(riqi). The equivalent

sample size α is set to 1.

92



6.1.2 Hierarchical Latent Dirichlet Allocation Modeling

In this paper, we used hierarchical Latent Dirichlet Allocation (hLDA) [26, 25] to model the

hierarchical tree topology of topics of a corpus of documents D = {d1, · · · , dn}. A document

di : 1 ≤ i ≤ n is a sequence of words denoted as di =< w1, · · · , wmi
>. A topic in hLDA

is defined as a word distribution over a vocabulary V . V is a lexicon set containing all the

words in a document corpus D. A hLDA model consists of two key components: nested

Chinese Restaurant Process (nCRP) and Dirichlet Mixture Model. We will discuss these

two techniques in the following subsections.

6.1.2.1 Nested Chinese Restaurant Process

Chinese Restaurant Process (CRP) is a special case of Dirichlet Process of latent mixture

component in Finite Dirichlet Process Mixture Model (DPMM) when the number of mixture

components K goes infinity [197]. It is a distribution with a single real value parameter γ

over partitions of integers. Suppose that there exists a restaurant with infinite number of

tables, each of which can accommodate infinite customers. For a group of n customers lined

as a sequence {s1, · · · , sn}, the first customer chooses the first table t1 with the probability

1 and the nth customer selects one of occupied tables ti : 1 ≤ i ≤ K or a new unoccupied

table tK+1 based on the distribution as follows.

P (ti|s1, · · · , sn−1) =
ni

n− 1 + γ

P (tK+1|s1, · · · , sn−1) =
γ

n− 1 + γ
, (6.4)

where ni is the number of customers sitting at table ti and
∑K

i ni = n− 1.

Nested Chinese Restaurant Process (nCRP) is a model that extends CRP by incorpo-

rating hierarchical tree topology to handle inherent structures of data. In nCRP model, we

have a tree structure T that could have infinite branches and an infinite depth. Every node

in the tree can be seen as a restaurant described in CRP. Each edge from a parent node rp

93



to a child node rc in the tree represents a direct connection between a table ti in rp and rc,

that is, that the customers sitting at the table ti in rp will visit rc. We follow the work in

[26] and have the depth of the tree fixed as L. Hence, every customer is exposed to a set of

sequences of restaurants, which are all the existing pathes with the depth l from the root to

the leafs in the tree or potential new branches that extend from existing internal nodes to

the depth l. Hence, each node r in the tree represents a path cr that is a sequence of nodes

ordered from root to r. We denote the cr of a node r with the level l(r) as A(r) =< ai >

where i : 1 ≤ i ≤ l(r) is the level. The probability that a customer sn chooses a path cr is

P (cr|s1, · · · , sn−1, T ) =
γ

al(r) + γ

l(r)∏
i=2

n(ai)

n(ai−1) + γ
, (6.5)

where n(ai) is the number of customers that visited the restaurant ai.

In hLDA model, each document is treated as a customer and each topic is seen as a

restaurant in a nCRP tree. Hence nCRP provides a prior distribution of the document

assignment over sequences of topics.

6.1.2.2 Dirichlet Process Mixture Model

Suppose we have observations Y = {y1, · · · , yn} and yi : 1 ≤ i ≤ n is independently drawn

from an unknown distribution F . The general procedure of Dirichlet Process Mixture Model

[197] is as follows.

yi ∼ F (θc)

θci ∼ H(ci)

ci ∼ DirichletProcess(γ). (6.6)

In hLDA model, Y = D and nCRP serves as the Dirichlet Process to generate the mixture

class. Given a chosen nCRP path c, the generative procedure to draw a single document d

consists of two steps. For each word position i in d, first we select a level l in the path c;

94



second, we draw a word from the topic r at level l in c. Both steps that data are generated

from the discrete distribution with a Dirichlet prior. Hence, we have the new form of the

Dirichlet Process Mixture Model in hLDA model as follows.

Algorithm 1 The Generative Process to Generate a Document

PROCEDURE: sample a document
ci ∼ DirichletProcess(γ)
for each word w do
θl ∼ Dirichlet(α)
l ∼ Discrete(θl)
θw ∼ Dirichlet(η)
w ∼ Discrete(θw)

end for

6.1.3 Bayesian Network Structure Inference with Text Priors

We chose Markov chain Monte Carlo (MCMC) to sample the network and hierarchical tree

structures from the posterior P (G|x, T ) and P (T |D). We used Gibbs sampling to simulate

P (T |D) and employed Metropolis Hasting algorithm to sample G from P (G|x, T ). We

proposed two optional strategies to mix two sampling sub-procedures.

Algorithm 2 Option (I): Bi-way Mixing

PROCEDURE: iterative sampling {G, T}
while i < maximum #iterations do
sample G depending on T
sample T depending on G

end while

Algorithm 3 Option (II): One-way Mixing

PROCEDURE: iterative sampling {G, T}
while i < maximum #iterations do
sample T
sample G depending on T

end while

By considering that in our applications, documents summarized by experts may contain

much less noises than the observations to show a different view of network structures, in this

95



paper we chose the second strategy to do the one-way mixing. We called our mixing strategy

as text regularity.

We reformulated Equation 6.1 as follows.

P (G, T |x,D) = P (G|T,D, x)P (T |D, x)

= P (G|T, x)P (T |D)

= P (x|G,T )P (G|T )
P (x|T )

· P (D|T )P (T )
P (D)

= P (x|G)P (G|T )
P (x)

· P (D|T )P (T )
P (D)

, (6.7)

and have

P (G, T |x,D) ∝ P (x|G)P (G|T )P (D|T )P (T ) (6.8)

We set a uniform distribution for P (T ). To calculate P (D|T ), we followed the generative

procedure in Algorithm 1. For P (x|G), we applied BDeu metric in Equation 6.3. To calculate

P (G|T ), we used an additional structure that is a symmetric matrix M with the dimension

n. We first acquired the corresponding undirected graph G′ of a DAG G by eliminating the

direction of edges in G. For each pair of indices (i, j) in Mb, if the distance between nodes

vi and vj is less than τ in G′, we set Mi,j = 1. In this paper, we used τ = 2. It could be seen

as an extension of Markov Blanket [212]. Given a node vi, instead of defining a set MB that

contains vi’s parents, children, and children’s other parents, we define another set MB′ by

adding to MB with parents’ children, parents’ parent, and children’s children. Suppose that

nodes vi and vj assigned pathes ci and cj. We denoted the number of topics in a path as |c|

and the shared topics between two pathes ci and cj as |ci∩ cj|. We have the probability that

P (Mi,j = 1|T ) = |ci∩cj |
|c| where |ci| = |cj| = |c|. For each entry in the matrix M , there exists

a Bernoulli distribution with the parameter P (Mi,j = 1|T ). Since M is symmetric, we only

96



need to consider the elements below the diagonal. Hence, we have

P (G|T ) =
i,j=n∏

i,j=1,i<j

P (Mi,j|T ). (6.9)

In the following, we will discuss two sampling steps respectively.

6.1.3.1 Sampling of Topic Trees.

We followed Blei’s work [26, 25] to divided the Gibbs sampling into two steps: sampling

pathes of topics for documents and sampling levels in pathes for words.

We denoted all the words in a document corpus D as w, the words of a document d in

D as wd, the words in the documents of D − {d} as w−d, the words in D excluding the nth

word in a document d as w−(d,n), a single word in d as ω, all the assigned levels in pathes for

w as z, the levels for wd as zd, the levels for w−d as z−d, all the pathes for D as c, the path

for d as cd, and the pathes for D − {d} as c−d

Path Sampling. With the fixed depth l of the topic tree T and all the word levels z,

we have

P (cd|w, z, c−d) ∝ P (cd|c−d)P (wd|c, z, w−d). (6.10)

We calculated P (cd|c−d) with Equation 6.5. In Algorithm 1, we see a discrete distribution as

a special case of a multinomial. Given the assumption of multinomial distribution of lexicon

words with the Dirichlet prior parameterized by η, we have the distribution of potential

pathes for a single document d as

P (wd|c, z, w−d) =
∏l

i=1

Γ(
∑

ω
#[z−d=i,c−d,i=cd,l,w−d=ω]+|V |η)∏

ω
Γ(#[z−d=i,c−d,i=cd,l,w−d=ω]+η)∏

ω
Γ(#[z=i,ci=cd,l,w=ω]+|V |η)

Γ(
∑

ω
#[z=i,ci=cd,l,w=ω]+η)

. (6.11)

Word Level Sampling. With all the pathes c of documents D, we have the distribution

97



of level allocations for each word as

P (zd,n|z−(d,n), c, w) ∝ P (zd,n|zd,−n)P (wd,n|c, z, w−(d,n)). (6.12)

With the same assumption of multinomial distributions with Dirichlet priors on words along

levels and over topics, respectively parameterized by α and η, we have

P (zd,n|zd,−n) ∝ α +#[z−(d,n) = zd,n], (6.13)

and

P (wd,n|c, z, w−(d,n)) ∝ η +#[z−(d,n) = zd,n,

czd,n = cd,zd,n , w−(d,n) = wd,n]. (6.14)

6.1.3.2 Sampling of Bayesian Network Structures.

We used the general Metropolis Hasting algorithm with three move types [116]: (i) add an

edge; (ii) remove an edge; (iii) reverse an edge. Instead of using the directed acyclic graph

G as the state, we chose the symmetric matrix M as its equivalence. We saw the state

transition procedure of M as two steps: (i) to randomly select multiple entries Mijs; (ii) to

sample the values of Mijs with Bernoulli distributions. Hence, we proposed the acceptance

criterion as follows.

P (M,M ′) = min{1, P (M ′|x)P (M |M ′, T )

P (M |x)P (M ′|M,T )
}, (6.15)

where P (M |M ′, T ) is calculated with Equation 6.9 and the ratio P (M |M ′,T )
P (M ′|M,T )

has the form

P (M |M ′, T )

P (M ′|M,T )
=

∏
i<j,P (Mi,j )̸=P (M ′

i,j)

P (Mi,j|T )
P (Mi,j|T )

. (6.16)

98



We used one of the discussed move types to propose new sample G′ and approximated

P (G|G′) with P (M |M ′). When G′ is a cyclic graph, we reject the new state M ′.

6.2 Experimental Study and Evaluation

We performed all the experiments on Intel Xeon 3.2 Ghz EM64T processors with 4 GB

memory. We implemented our method in Java.

We compare two approaches: 1) our approach denoted as BNsTP, 2) the general bayesian

network structure learning algorithm denoted as BNs [116] Our experimental study is based

on three data sets: two hybrid educational data set and one biological microarray gene

expression data. We evaluate three methods from structure prediction accuracy.

Structure Prediction Accuracy. To compare the inferred structure results from dif-

ferent data sets, we follow the evaluation method introduced in [129, 262, 102]. For the

hybrid data sets, we compare the inferred network structures with the true networks. For

the real biological data sets, we collect gold standard reference networks as the ground truth.

In case where we have ground truth network structure (the hybrid synthetic data set), we

use the area under receiver operating characteristic curve (AUROC) values to evaluate the

performance. In case where we have no true network structure (the biological data set), we

compare our findings with other researchers’ work. Before we discuss the details of experi-

mental results, we present the characteristics of our data set first below.

6.2.1 Data Sets

Synthetic Educational Data.

The original data set is from the Dynamic Learning Maps Alternate Assessment System

(DLM) project in the the Center for Educational Testing and Evaluation (CETE) at the

University of Kansas [2]. It represents an example of a small portion of a learning map, which

is one of the results in an effort of building an alternate assessment system for students with

99



Figure 6.1: The Math Learning Pathways with 30 Nodes

significant cognitive disabilities in educational testing field. The map is designed to show

what students know in ways that traditional multiple-choice tests cannot. This particular

portion of the map has 30 nodes, each of which indicates a math skill. We showed the

structure of this map in Fig. 6.1.

The graph structure contains two major pieces of information about mathematics. One

piece is about investigating students’ learning progression on series of knowledge with regard

to understanding rational numbers, relationship between rational numbers and number line,

till further down the path about conducting rational number operations and applying the

knowledge about rational numbers to the real world problems. The other piece is about

probing the relationship between fractions and rational numbers, and further down the path

to be able to use properties of exponents. The two pieces joint at a place where students are

expected to understand the reason that sum of two rational numbers is a rational number

and then they each develop further independently.

This data set has two parts: generated synthetic binary observations and node descrip-

tions, which are short descriptions in words about nodes.

100



Figure 6.2: The A. thaliana oscillator loops of the circadian clock network.

Arabidopsis Thaliana Circadian Regulation Gene Data. We use the Arabidopsis

Thaliana Circadian gene expression data investigated in [102]. The data sets consist of

9 genes, LHY, CCA1, TOC1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3. The group

of genes create transcriptional feedback loops and are critical to understand the internal

clock-signalling network of plant. The Arabidopsis data are sampled from two light-dark

conditions: (I) 10h:10h light/dark cycle and (II) 14h:14h light/dark cycle. Each data set

contains 13 time points collected with the interval of 2 hours. We build a gold standard

network based on the biological literatures [183, 228, 62, 208, 110, 190]. In this network,

CCA1 and LHY proteins directly bind to the promoter of TOC1 to represses the expression

of TOC1. The pseudo-response regulators PRR5 and PRR9 are activated by CCA1 and LHY

and repress CCA1 and LHY subsequently. G1 improves the expression of TOC1. ELF4 is

repressed by CCA1. In Figure 6.2, we show a detailed referred graph figure used in our

previous work [141, 145].

We collected the text data for these genes independently from the literatures for retrieving

the network. All the descriptions of these 9 genes are from the Arabidopsis Information

Resource Database [1], which are short summarized key words related to these genes.

In addition, we revised Figure 6.2 into an acyclic directed graph showed in Figure 6.3.

We used this revised network to generate another synthetic data set with 20 observations.

101



Figure 6.3: The A. thaliana synthetic network.

20 30 40 50 60 70 80 90 100 150
0.5

0.6

0.7

0.8

0.9

1

N

AU
R

O
C

 S
co

re

 

 

BNs
BNsTP

Figure 6.4: The AUROC score over the number of samples.

6.2.2 Experimental Results

We generated a group of education synthetic data with different numbers (N) of observations

and tested the structure prediction performance on them. For each data set, we did the

experiments 10 times independently. We showed the AUROC score changes over N in

Figure 6.4. BNsTP outperformed BNs when N is small (N = 20 ∼ 70). This finding helps

to setup the fitful scenarios for BNsTP to be applications with limited samples. When more

observations are available, the text encoded priors will slowly lose their advantages.

6.2.2.1 Structure Prediction Accuracy

We evaluated the network structure prediction accuracy based on AUROC score in two

synthetic data sets and two real biological data sets. For the education synthetic data, both

BNsTR and BNs ran 400,000 iterations and used 80,000 iterations for burn-in. For the all

thaliana synthetic and real data, both BNsTR and BNs sampled 1,000,000 iterations and

took 200,000 iterations for burn-in.

102



Table 6.1: The AUROC values of BNsTR and BNs on synthetic and real data

Education Synthetic Data (N=40) Thaliana Synthetic Data (N=20) Thaliana T20 (N=13) Thaliana T28 (N=13)

BNsTR 0.7166 0.6829 0.6170 0.5947

BNs 0.5929 0.4376 0.4090 0.4268

TP, true positive; FP, false positive; TN,
true negative; FN, false negative.
Sensitivity = TP/(TP+FN).
Specificity = TN/(TN+FP).
Complementary Specificity = 1- Speci-
ficity = FP/(TN+FP).
The ROC curves are plotted with the Sen-
sitivity scores against the corresponding
Complementary Specificity scores.

We showed the results in Table 6.1. In all three data sets, BNsTR performed much better

than the general BNs approach. For example, BNsTR beat BNs with 0.1237 improvement

in education synthetic data, 0.2453 improvement in thaliana synthetic data, 0.2080 improve-

ment in thaliana T20 data, and 0.1679 improvement in thaliana T28 data. Both BNsTR and

BNs methods get better scores in thaliana synthetic data than real data. Our explanations

are that the real microarray gene expression data is usually more noisy than the synthetic

observations and the synthetic data have more data points. When considering the differ-

ence between the synthetic and real thaliana networks, the acyclic constraint of Bayesian

Networks may be the additional reason to affect the prediction performance in real data.

All our experimental results showed that the text information of nodes in both education

and biological applications greatly improve the structure prediction in the scenarios of lim-

ited samples. In this paper, we had two assumptions. First, we assumed that the professional

descriptions of items from domain experts may contain rich structured information, that is,

that more similar functional entities would be described with more identical words. Second,

we assumed that neighbored nodes in network structures have similar functional roles. Third,

when two functions’ definition in texts and networks are consistent, the inherent structural

information in text will be useful prior to limit the model searching space in network struc-

ture inference procedure. Our findings during our experimental study demonstrated these

103



previous assumptions.

104



Chapter 7

Online Spectral Clustering on

Unlimited Graph Streams

With the fast accumulation of stream data from various type of networks, significant re-

search interests have arisen in applying spectral clustering on evolving graphs. However, the

common limitation of existing spectral methods is their computational inefficiency. Most

of them are off-line methods and need to recompute solutions from scratch at each time

point. The existing work on improving the computational performance of spectral clustering

is very limited. The application of the existing incremental spectral clustering approach is

limited by its scalability constraint. We propose our computationally efficient online spectral

clustering method ISSUER (Incremental Spectral cluStering based on matrix pertUrbation

thEoRy) with three novel spectrum approximation algorithms: FOA (First Order Approxi-

mation), GEPT (General Eigen Perturbation Theory) and EEPT (Enhanced Eigen Pertur-

bation Theory) [142]. Our experimental study shows that our approaches outperform the

existing incremental spectral clustering approach in computational efficiency while having

better clustering accuracy.

105



7.1 Related Work

We summarize our related work into two parts: incremental spectral clustering and the

related area, evolutionary spectral clustering. For general graph clustering and spectral

clustering techniques, we refer to [231, 196] for recent surveys.

7.1.1 Incremental Spectral Clustering

Incremental clustering are usually used to handle two types of clustering tasks [266]: (i)

that sequentially clusters incoming new data points that are each observed once, known

as data stream clustering [40]; (ii) that continuously clusters data points that are each

observed at multiple time points. The incremental clustering tasks are mainly focusing on

high computational efficiency.

The existing work on incremental spectral clustering have [248, 158, 203]. Both Val-

grem’s work [248] and Kong’s work [158] targeted the first type of task. They reduced the

computational cost by incrementally approximating original large affinity matrices with the

smaller ones that only consist of the representative points of clusters. Their methods are

designed to handle the insertion and deletion of objects. Ning’s work [203] focused on the

second type of task. It reduced the computational cost by incrementally updating the eigen-

values/vectors by using similarity change operations on incidence matrix. Their eigenvalue

approximation is the first order Taylor approximation. Their perturbed eigenvectors is esti-

mated based on their empirical finding that only the neighborhoods of the nodes connecting

the changed edges contribute to the changes of perturbed eigenvectors. The computational

gain of Ning’s method is only obtained in the condition that a matrix perturbation related to

affinity matrices or adjacency matrices of graphs consists of very limited number of similarity

changes.

Although the existing work on incremental spectral clustering are very limited, there

is a large body of work on data stream incremental clustering other than spectrum analy-

106



sis, such as, incremental hierarchical clustering [41], incremental micro-clustering [176], and

incremental correlation clustering [184] and reference therein.

7.1.2 Evolutionary Spectral Clustering

Evolutionary clustering aims to discover clusters in a sequence of clustering tasks from time

series data [37]. It is designed specifically for time series data with slowly drifting clustering

boundaries and use temporal smoothness functions to eliminate short-term noises. In recent

years, this approach has greatly expanded in classical spectral clustering algorithms, such as

[49, 266, 247, 99].

Evolutionary spectral clustering is highly correlated to our research. From the view of

the matrix perturbation theory [244], this application setting is seen as small perturbations.

With a sufficiently small perturbation, the perturbed eigensystem does not deviate far from

the existing one. Hence, the evolutionary scenario provides a good condition for the success

of computationally efficient incremental spectrum computation techniques.

7.2 Preliminary and Background

7.2.1 Preliminary

A weighted undirected graph G is a 3-tuple G = (V,E,W ) where V is the set of vertices

of G and E ⊆ V × V is the set of undirected edges of G with (u, v) ≡ (v, u) : u, v ∈ V .

W : V ×V → R+∪{0} is the function assigning a non-negative real value W (l) to each node

pair l ∈ V ×V . If a link l ∈ E, then W (l) > 0, otherwise W (l) = 0. An evolving weighted

undirected graph < G > is a sequence of weighted undirected graphs < G1, G2, . . . , GT >,

where VG1 = · · · = VGT
= V . For simplicity, in the remaining of the paper we write evolving

graph to denote evolving weighted undirected graph.

The adjacency matrix A(G) of a weighted undirected graph G with n nodes is an n×n

matrix, where each entry ai,j = W (i, j). A is a symmetric matrix. The graph Laplacian

107



matrix L for a given G is defined as L(G) = D(G) − A(G), where D(G) is a diagonal

matrix with di,i =
∑

j ai,j. The transition matrix B(G) = D−1 × A(G). Correspondingly

we define an evolving matrix < A > as < A1, A2, . . . , AT >.

7.2.2 Spectral Clustering

The spectral clustering algorithms are based on spectral graph theory, where the study of

eigenvalues/eigenvectors of the affiliated squared matrices such as L or B that represent

graphs are the essence.

Without losing the generality, in this paper we focus on the Normalized Cut algorithm

[238, 18]. Our algorithm can easily extend to other spectral clustering methods.

In k-way normalized cut, the algorithm minimizes the objective function as NC =∑k
i=1

assoc(Si,V \Si)
assoc(Si,V )

, where assoc( Si, Sj) =
∑

p∈Si,q∈Sj
W (p, q) and V \Si is the complement of

Si. In Bach’s work [18], it showed that theNC measure is equal to k−trace(XTD− 1
2AD− 1

2X),

where X is a n× k matrix with two constraints: (i) the columns of XTD− 1
2 piecewise con-

stant w.r.t. the set S and (ii) XTX = I. X is a normalized indicator matrix. The solution

for the relaxed version of NC optimization problem is the eigenvectors corresponding to k

largest eigenvalues of the matrix D− 1
2AD− 1

2 denoted as A′.

The general procedure of k-way normalized cut algorithm is as follows:

1. compute the eigenvectors X pertaining to the largest k eigenvalues of the matrix A′ =

D− 1
2AD− 1

2 or its variants such as the transition matrix B.

2. let X be the matrix with each row as the feature vector for a node (or data point).

3. run the k-means clustering method to cluster the nodes (or data points).

Figure 7.1 depicts an evolving graph with two snapshots. There are clearly two clusters

in each graph (k = 2). The red dashed lines in Figure 7.1 indicate the partitioning boundary

of the clusters.

108



A

B

C

D

E

F

1.0 0.3 0.1 1.2 1.1

A

B

C

D

E

F

1.0 0.3 0.8 1.4 1.1

G1 G2

Figure 7.1: An example of an evolving graph with two snapshots

In this paper, we are focusing on the first step of the general algorithm and propose

multiple novel methods to incrementally calculate the eigenpairs to save computational time.

We formalize our incremental spectral updating problem as follows:

In a smoothly evolving matrix < A′ >, given A′
t, its eigenvalues/vectors λt, xt, and A′

t+1,

incrementally compute the corresponding eigenpair: λt+1, xt+1 of A′
t+1.

7.3 Methods

In this section, we will discuss our three novel incremental spectral updating algorithms:

FOA, GEPT, and EEPT.

7.3.1 First Order Approximation (FOA) Approach

Suppose that λ and x is an eigen-pair of a matrix A′ with xTx = 1. Given a new symmetric

matrix Ã′ = A′ + ∆A′, we denote the new eigenpair as λ̃ = λ + ∆λ and x̃ = x + ∆x and

have (A′ +∆A′)(x+∆x) = (λ+∆λ)(x+∆x).

We ignore the second order components ∆λ∆x and ∆A′∆x and with A′x = λx obtain

A′∆x+∆A′x=λ∆x+∆λx. (7.1)

By multiplying xT to the left of both sides of the equation, we have

∆λ=xT∆A′x. (7.2)

109



We substitute ∆λ in Equation 7.1 with Equation 7.2 and have

(A′−λI)∆x=((xT∆A′x)I−∆A′)x. (7.3)

The matrix A′−λI is singular. There is no unique solution for ∆x. To address this issue,

Ning et al. [203] adopted an approximation approach that only keeps the corresponding

rows and columns of the neighbors of the nodes in a similarity change. It created a smaller

matrix KNij
to replace A′ − λI. We propose a new method that substitutes the matrix A′

in Equation 7.3 with the new matrix Ã′ and have

∆x=(Ã′−λI)−1((xT∆A′x)I−∆A′)x. (7.4)

In Example 1, we show the perturbed eigenpair approximation errors Errλ and ErrX

of graph G2 in Figure 7.1 based on FOA. The measures of spectrum approximation errors

will be discussed in Section 7.4.2. For the purpose of comparison, we included the eigenpair

approximation errors of Ning’s approach [203] denoted as SC-FOA (Similarity Change based

First Order Approximation approach).

Example 1. The spectrum approximation errors of the estimated k eigenvectors X̂(G2)

using Ning’s work are Errλ = 0.1444 and ErrX = 28.36o

The spectrum approximation errors of the estimated k eigenvectors X̂(G2) using FOA

are Errλ = 0.0399 and ErrX = 10.45o

A

B

C

D

E

F

1.0 0.3 0.1 1.2 1.1

A

B

C

D

E

F

1.0 0.3 0.8 1.4 1.1

G1 G2

Figure 7.2: The clustering results of the evolving graph in Figure 7.1 by using SC-FOA

110



A

B

C

D

E

F

1.0 0.3 0.1 1.2 1.1

A

B

C

D

E

F

1.0 0.3 0.8 1.4 1.1

G1 G2

Figure 7.3: The clustering results of the evolving graph in Figure 7.1 by using FOA

Figure 7.2 and 7.3 depict the clustering results of the evolving graph G1 and G2, re-

spectively using SC-FOA and FOA. SC-FOA does not partition G2 correctly while FOA

does.

7.3.2 Eigen Perturbation Theory Based Approaches

The problem of how to compute the perturbation of characteristic values and vectors of

A′ given a small matrix variation ∆A′ is a typical perturbation expansion problem well

investigated in the field of Matrix Perturbation Theory. In this subsection, we propose two

additional incremental eigenpair updating approaches based on the existing work on eigen

perturbation theory [264, 244].

7.3.2.1 General Eigen Perturbation Theory (GEPT) Approach

Our GEPT approach used Gerschgorin’s Theorem [89, 264] and Stewart’s invariant sub-

space perturbation theorem [244] to estimate the perturbed eigenvalues and eigenvectors

respectively.

Theorem 5. Gerschgorin’s Theorem. Given an n× n matrix A, let

ai=
∑

j ̸=i
|ai,j | and Qi={x: |x−aii|≤ai},

that is called a Gerschgorin disk. Then the spectrum

L(A′)⊂
∪n

i=1
Qi.

111



Moreover, if m of the Gerschgorin disks are isolated from other n − m disks, there are

precisely m eigenvalues of A in the union of the m Gerschgorin disks.⋄

By shrinking a Gerschgorin disk while keeping separating it from other disks, we could

get a sharp bound for an eigenvalue. We followed the procedure showed in [264] to derive a

perturbed simple eigenvalue λ1(Ã′) as follows.

λ1(Ã′)=λ1(A′)+xT∆A′x+O(∥∆A′∥2). (7.5)

By ignoring the second order term, we have the approximation solution of a general perturbed

eigenvalue λ̃ as

λ̃≈λ+xT∆A′x. (7.6)

The incremental eigenvector updating in our GEPT approach is based on Stewart’s work

on invariant subspace perturbation theory [244]. Given a subspace χ, when A′χ ⊂ χ where

A′χ = {A′µ : µ ∈ χ}, we call χ an invariant subspace of A′. We denote X as the matrix

with k eigenvector of A′ as columns and have the invariant subspace χ spanned by the

columns of X denoted as χ(X). The columns of X form a basis for χ and there is a unique

matrix L such that A′X = XL. L is called the representation of A′ in χ w.r.t. X and

has the same eigenvalues corresponding to X. Here we only consider the invariant subspace

with the spectrum of L separated from other eigenvalues of A′. We call such a subspace

simple invariant subspace. In practical spectrum calculation, considering round-off errors in

numerical methods, we could see our selected k-eigenvalues always simple eigenvalues that

are separated from other eigenvalues.

Theorem 6. Suppose two matrices X and Y. Let the columns of X be linearly independent

and the columns of Y span the orthogonal complement of a subspace χ. Then χ is an invariant

subspace of A′ if and only if Y TA′X=0.⋄

112



Theorem 7. Stewart’s Invariant Subspace Perturbation Theorem. Let [X Y ] be orthogonal

and suppose that χ(X) is a simple invariant subspace of A′ spanned by X, so that

[X Y ]TA′[X Y ]=

L1 0

0 L2

,

where L1=XTA′X and L2=Y TA′Y .

Given a perturbation ∆A′, let

[X Y ]T∆A′[X Y ]=

E11 E12

ET
12 E22

.

Let γ=η=∥E12∥2 and σ=sep(L1,L2)−2∥E12∥2, where sep(L1,L2)=inf∥P∥2=1∥PL1−L2P∥2>0. Then if γ
σ
< 1

2
,

there is a unique matrix P satisfying ∥P∥2≤ 2γ

σ+
√

σ2−4γ2
<2 γ

σ
, such that the columns of

X̃=(X+Y P )(I+PTP )−
1
2 (7.7)

Ỹ=(Y−XPT )(I+PPT )−
1
2 (7.8)

form orthonormal bases for simple invariant subspace χ̃ of Ã′ = A′+∆A′ and the orthogonal

supplement of χ̃.⋄

We let X = x be an eigenvector corresponding to a simple λ. According to Theorem 6

and 7, we get the approximate solutions for x̃ and Ỹ as follows.

x̃≈x+Y p=x+Y (λI−L2)−1Y T∆A′x (7.9)

Ỹ≈Y−xpT=Y−xxT∆A′Y (λI−L2)−1. (7.10)

Due to the limitation of the space, we omitted the mathematical derivation and proofs. More

technical details are available on [89, 264, 244].

In Example 2, we show the perturbed eigenpair approximation errors of graph G2 in

113



Figure 7.1 based on GEPT.

Example 2. The spectrum approximation errors of the estimated k eigenvectors X̂(G2)

using GEPT are Errλ = 0.0399 and ErrX = 13.88o

A

B

C

D

E

F

1.0 0.3 0.1 1.2 1.1

A

B

C

D

E

F

1.0 0.3 0.8 1.4 1.1

G1 G2

Figure 7.4: The clustering results of the evolving graph in Figure 7.1 by using GEPT

Figure 7.4 depicts the clustering results of the evolving graph G1 and G2 using GEPT.

GEPT does not partition the graph G2 correctly.

7.3.2.2 Enhanced Eigen Perturbation Theory (EEPT) Approach

The eigen perturbation theory discussed in the GEPT approach builds a strong theoretic

foundation for our incremental eigenpair updating problem. It not only provides us solu-

tions to approximate perturbed eigenvalues/vectors but also shapes them with informative

perturbation bounds. However the eigen updating technique used in GEPT has obvious

drawbacks. First, in evolving scenarios, for each of k selected eigenvectors x, the GEPT

algorithm needs to continuously store and update their corresponding Y s. It may elimi-

nate the computational benefits obtained by our eigen incremental updating scheme with

the increasing cluster number. Second, by approximating eigenvalues/vectors separately, it

may accumulate errors quickly. Third, the structure of the symmetric matrix A′ is not fully

explored.

Here we show our third approach EEPT that is based on the same perturbation theory

[244] as GEPT. But it is computationally more efficient and has better accuracy on eigen

perturbation estimation. Different from GEPT, it solves both eigenvalue and eigenvector

updating problem in the same theoretic framework.

114



LetX be the largest k eigenvectors of A′ and Y form a basis of the orthogonal complement

of the invariant subspace χ(X) with XTX = I and Y TY = I. With Theorem 6, considering

that A′ is symmetric, we have

A′[X Y ]=[X Y ]

L1 0

0 L2

,

where L1 and L2 are symmetric. Given a small perturbation ∆A′, we have

(A′+∆A′)[X Y ]=[X Y ]

L1+E11 E12

ET
12 L2+E22

. (7.11)

By multiplying an orthogonal matrix

F=

 I −PT

P I


(I+PTP )−

1
2 0

0 (I+PPT )−
1
2



on both sides of Equation 7.11, we have

(A′+∆A′)[X Y ]F=[X Y ]FFT

L1+E11 E12

ET
12 L2+E22

F. (7.12)

With a well selected P , we let

FT

L1+E11 E12

ET
12 L2+E22

F=

L̃1 0

0 L̃2

. (7.13)

Hence, Equation 7.12 has the form

(A′+∆A′)[X Y ]F=[X Y ]F

L̃1 0

0 L̃2

. (7.14)

115



It satisfies the condition in Theorem 6. Hence, we get Equation 7.7 and 7.8.

In order to satisfy Equation 7.13, we need

−P (L1+E11)+ET
12−PE12P+(L2+E22)P=0 (7.15)

or P (L1+E11+E12P )=ET
12+(L2+E22)P , (7.16)

which is the direct result by expanding Equation 7.13. By ignoring the higher order term in

the Equation 7.15 and reorganize it, we have

P (L1+E11)−(L2+E22)P=ET
12. (7.17)

Equation 7.17 is Sylvester’s Equation that has the form AX − XB = C. We show the

necessary and sufficient condition to have a unique solution for Sylvester’s Equation [244]

below.

Theorem 8. The Sylvester’s Equation AX −XB = C has a unique solution if and only if

L(A) ∩ L(B) = ∅, where L(.) is the spectrum of a square matrix.⋄

From the perturbation theory point of view to understand the spectral clustering [253],

the selected k eigenvectors X of the matrix A are the perturbed indicator vectors of k

clusters X̄ of the corresponding matrix Ā with a small perturbation ∆Ā = A− Ā. We used

canonical angles Θ between subspaces χ(X) and χ(X̄) to measure the difference between

X and X̄. We let sinΘ be the diagonal matrix with the sine of Θ as the diagonal entries.

The Davis-Kahan Theorem [244] shows that ∥ sinΘ∥ ≤ ∥∆Ā∥
σ

, where ∥ · ∥ is Frobenius norm

and σ = |λk − λk+1|, where λk and λk+1 are the largest kth and (k + 1)th eigenvalues.

The smaller ∥ sinΘ∥ represents the smaller difference between X and X̄, and indicates the

better clustering output. Both Meila’s and Ng’s work [237, 200] showed that a larger eigengap

|λk−λk+1| between the selected k eigenvalues Λ1···k = {λ1, · · · , λk} and other n−k eigenvalues

L(A′)\Λ1···kg provides a better clustering results.

116



L1 and L2, as the representation of A′ in the invariant subspace w.r.t. X or Y , respectively

reserves the spectrums Λ1···k and L(A′)\Λ1···k. With a well selected k eigenvalues with a large

gap |λk − λk+1|, it guarantees that L(L1) and L(L2) are well separated. With a sufficiently

small perturbation ∆A′, L(L̃1) and L(L̃2) are closer enough to L(L1) and L(L2) so that

L(L̃1) and L(L̃2) are still separated. Hence, there is a unique solution for Equation 7.17.

Algorithms to solve Sylvester’s Equation are available in [214] and reference therein.

With Equation 7.13 and Equation 7.16, we have

L̃1≈L1+∆E11+E12P , (7.18)

L̃2=L2+Ỹ T∆A′Ỹ≈L2+Y T∆A′Y . (7.19)

Let Λ1···k(L̃1) and U be the eigenvalues and its corresponding normalized eigenvectors of

L̃1. We have the perturbed k eigenvalues Λ̃1···k and eigenvectors X̃ as

Λ̃1···k=Λ1···k(L̃1) (7.20)

X̃=X̂U=(X+Y P )(1+PTP )−
1
2U≈(X+Y P )U. (7.21)

In Example 3, we show the perturbed eigenpair approximation errors of graph G2 in

Figure 7.1 based on EEPT.

Example 3. The spectrum approximation errors of the estimated k eigenvectors X̂(G2)

using EEPT are Errλ = 0.0023 and ErrX = 1.1401o

A

B

C

D

E

F

1.0 0.3 0.1 1.2 1.1

A

B

C

D

E

F

1.0 0.3 0.8 1.4 1.1

G1 G2

Figure 7.5: The clustering results of the evolving graph in Figure 7.1 by using EEPT

Figure 7.5 depicts the clustering results of the evolving graph G1 and G2 using EEPT.

EEPT correctly partitioned the graph G2.

117



7.3.3 Clustering Re-initialization Policies

Considering the dramatic fall in clustering accuracy caused by accumulated approximation

errors or a sudden and dramatic shift of cluster boundary, it is necessary to re-initialize the

clustering for all the approximation techniques.

We measure the shifting level of cluster boundaries by using the maximum canonical

angle θ between invariant subspaces spanned by k-eigenvectors Xt and Xt+1 over successive

time points. In EEPT, we approximate θ with θ̃ between estimated X̃t and ˜Xt+1. We use θ̃

to measure both the accumulated approximation errors and large perturbation.

We listed the re-initialization policies for our proposed approximation technique and

SC-FOA [203] as follows.

1. EEPT: re-initialize under the conditions: (i) the maximum canonical angle between

the subspaces χ(X̃t) and χ(X̃t+1) is more than a given threshold σ; (ii) L̃1 has non-real

eigenvalues.

2. GEPT: re-initialize under the conditions: (i) after an arbitrary number of time points

nlimit.

3. FOA: re-initialize under the conditions: (i) after an arbitrary number of time points

nlimit; (ii) (Ã′ − λI) is singular.

4. SC-FOA: re-initialize under the conditions: (i) after an arbitrary number of similarity

change operations nlimit; (ii) KNij
is singular.

7.3.4 Time Complexity Analysis

The standard eigenvalue solver takes O(N3) operations [237], where N is the number of

graph nodes. When A′ and its resulting eigen-system are very sparse, Lanczos method [96]

reduces the time complexity to O(N 3
2 ). Ning’s method [203] has a approximately linear

118



time complexity O(N) when N is large enough and A′ is very sparse. However, our exper-

imental study shows that with increasing number of similarity changes in a single matrix

perturbation, it performs even worse than the general approach using Lanczos algorithm.

Before we show the time complexities of our three spectrum approximation algorithms,

we have the following assumptions: A′ are large sparse matrices with the non-zero entries

linearly to N . ∆A′ are sparse matrices with the number of non-zero entries m : m ≪ N ;

x are vectors with the number of non-zeros entries p; X and Y are sparse matrices with

the number of non-zero entries kq and p. Such assumptions are usually the case in our

application scenarios.

• FOA: O(m) on ∆λ; for ∆x, O(N) on ((xT∆A′x)I −∆A′)x, O(N2.376) on the inverse

of (Ã′ − λI) [61], O(N2) on ((xT∆A′x)I −∆A′)x and (Ã′ − λI).

• GEPT: O(m) on ∆λ; with the naive sparse matrix multiplication algorithm [109],

O(min(p,N) ·m ·min(p,N − 1)) on x̃ and O(q ·min(m · p,N)) on Ỹ .

• EEPT: The key calculations exist in sparse matrix multiplication and the solver of

Sylvester’s equation in Equation 7.17. With [109], it takesO(k2·m) on E11, O((min(N−

k, p))2 ·m) on E22, O(k ·min(N − k, p) ·m) on E12. We assume that P , a (N − k)× k

sparse matrix, has f non-zero entries. It takes O(k · f) on Ỹ , O(k · p) on X̂, O(k3 · p)

on X̃, O(k2 ·min(N − k, p) ·m) on L̃1, and O((min(N − k, p + kf))2 ·m) on L̃2. We

treat L2 + E22 and L1 + E11 as diagonal matrices. it takes O(k · min(N − k, p) · m)

to solve Equation 7.17 based on Hessenberg system [97]. The total time complexity of

EEPT is the largest scale of those key calculations.

The time complexities of GEPT and EEPT depend on the values of p and f in matrix

multiplication. Parallel algorithms on matrix multiplication is a well-studied problem [107].

Hence, a further computational improvement of our algorithms will be achieved by the

parallelization of matrix multiplication in distributed computing environment.

119



7.4 Experimental Study

We performed all the experiments on a desktop machine with an Intel core i7 2.66 GHz CPU

and 6 GB memory. We implemented our three methods in Matlab. We implemented Ning’s

Method [203] SC-FOA in Matlab.

We compared our three methods: FOA, GEPT and EEPT with the Lanczos algorithm

[96] denoted as STANDARD, and Ning’s SC-FOA approach. Our experimental study is

based on three data sets: one synthetic graph stream, one Facebook social network stream,

and one Autonomous System graph stream. We evaluated these methods from two aspects:

i) eigenvalue/vector approximation error; ii) clustering performance.

7.4.1 Data Sets

Synthetic Data. We followed the work in [49] to create an evolving graph stream with

N nodes and T time points. We evenly divided N nodes into 4 groups. The edges inside

each group were randomly selected with the probability Zin and the edges between groups

were randomly chosen with the probability Zout. We selected the values of Zin and Zout to

let the expected degree of nodes be Dall and the expected number of between-group edges

connected to each node be Dout. Between two successive time points, we randomly selected

r% nodes and changed their memberships randomly.

Real Facebook Data. We used the Facebook social network data that was originally

collected and investigated in [252]. We created a data set with 531 users and analyzed their

interactions from 03/21/2008 to 01/22/2009. We built the undirected Facebook friendship

network Gs between these 531 users from the friendship links. We separated The wall-posts

weekly to totally 44 time snapshots and built the undirected user activity network Gt
p from

their weekly wall posts. The nodes are users and the edges indicate that there are at least

one post between users in a week. Considering the significant lower node degrees in Gt
p than

Gs [252], we analyzed a new type of snapshot graph called the constrained user activity

120



network Gt
cp with A(Gt

cp) = A(Gs) + A(Gt
p).

Real Autonomous Systems Data. Border Gateway Protocol (BGP) is an exterior

gateway protocol that performs routing between routers of different organizations on Internet

that are called Autonomous Systems (ASs) and maintains the routing tables among ASs.

An undirected graph is constructed from the BGP routing logs with nodes being ASs and

edges indicating the existence of routings between ASs. We used the evolving Autonomous

Systems graph data set created by University of Oregon Route Views Project [172].

This Autonomous System graph data contains 733 undirected BGP graphs constructed

daily from November 8, 1997 to January 2, 2000. We selected the first 150 graphs from

11/08/1997 to 04/08/1998 and retrieved all edges each occurring in all these graphs. We

collected all 2009 nodes pertaining to the shared edges as our vertex set V and analyzed the

induced subgraphs over V among these 150 graphs.

7.4.2 Evaluation

Eigenvalue/vector Approximation Errors. We calculated the estimated eigenvalue λ̃

error as Errλ = maxλ∈Λk
| λ̃ − λ |. Λk are the selected k eigenvalues. Given the true k

eigenvectors X, we measure the error ErrX of updated eigenvector X̃ with the maximum

canonical angle θ1 between the subspace χ(X) and the subspace χ(X̃) respectively spanned

by X and X̃. The nonzero singular values of Y T X̃ are sines of nonzero canonical angles

between χ(X) and χ(X̃). Y T is the orthonormal basis of the orthogonal complement of

χ(X).

Clustering Performance. We evaluated the clustering performance with two measures:

clustering accuracy and Rand Index [219]. The clustering accuracy ACC = N ′/N . With

the best match of the target and clustering classes, N ′ is the number of correctly clustered

data, and N is the number of data to be clustered. The Rand index RI = TP+TN
TP+FP+TN+FN

.

TP is the number of pairs of data with the same classes assigned into the same clusters. TN

is the number of pairs of data with different classes assigned into different clusters. FP and

121



0 800 1600 2400 3200 4000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

N

C
o

m
p

u
ta

tio
n

a
l T

im
e

 (
s)

EEPT
GEPT
FOA
STANDARD
SC−FOA

(a) Scalability over N

1 2 3 4 5
10

0

10
1

10
2

10
3

D
out

C
o

m
p

u
ta

ti
o

n
a

l 
T

im
e

 (
s
)

 

 
EEPT
GEPT
FOA
STANDARD
SC−FOA

(b) Scalability over Dout

1 2 3 4
10

0

10
1

10
2

10
3

D
all

C
o
m

p
u
ta

tio
n
a
l T

im
e
 (

s)

(c) Scalability over Dall

1 2 3 4 5
10

0

10
1

10
2

10
3

r (%)

C
o
m

p
u
ta

tio
n
a
l T

im
e

 (
s)

(d) Scalability over r

Figure 7.6: The computational scalability analysis. (a) The scalability analysis over the
graph size N (Dall = 16, Dout = 4, r = 1%); (b) Scalability analysis over Dout (N =
2000, Dall = 16, r = 1%); (c) Scalability analysis over Dall with (N = 2000, Dout = 4, r =
1%); (d) Scalability analysis over r (N = 2000, Dall = 16, Dout = 4).

FN are computed similarly.

7.4.3 Results

7.4.3.1 Scalability Analysis

We first used the synthetic data to investigate the computational scalability of five methods.

We ran all the experiment 10 times independently and calculated the average time.

We created synthetic evolving graphs by varying numbers of nodes N from 200 to 4000

with other parameters in the configuration fixed (Dall = 16, Dout = 4, and r = 1%). The

scalability experimental results over the graph size N are shown in Figure 7.6a. We found

that the SC-FOA approach does not scales well over the graph size N . The computational

cost of SC-FOA is proportional to the number of similarity changes nsc and nsc ≈ 2N · r ·

(Dall − Dout). For example, nsc ≈ 48 with N = 200 and nsc ≈ 960 with N = 4000. In

all cases, the SC-FOA method performs the worst. With the increasing graph sizes N , our

methods keep improving the folds of their computational gain over the standard approach.

By fixing N = 2000, Dall = 16, r = 1% and varying Dout from 1 to 5, we created synthetic

data to analyze the scalability over Dout. We showed the results in Figure 7.6b. We found

that EEPT, GEPT, and FOA are insensitive to the parameter Dout. The computational

performance of SC-FOA improves with increasing Dout. Similar trends were found in the

122



Figure 7.7: The initial adjacency matrix A of a synthetic evolving graph stream with 2400
nodes and 150 time points (Dall = 16, Dout = 4), r=1%.

Table 7.1: The comparison of STANDARD, EEPT, GEPT, FOA, SC-FOA on an evolving synthetic
network data

tavg(s) accavg(%) RIavg(%) Errλ avg ErrX avg (0o − 90o) ninit

STANDARD 25.93 98.49 98.91 0 0o 0
EEPT 12.76 99.16 99.17 0.0392 6.43o 2
GEPT 16.59 82.13 84.93 0.2418 39.57o 3
FOA 3.22 53.90 75.40 0.2204 62.17o 3
SC-FOA 89.23 81.62 84.59 0.2135 42.41o 3
tavg is the average computational cost for eigenpair calculation over 150 time points
. accavg is the average clustering accuracy. RIavg is the average Rand Index score.
ninit is the total number of re-initialization.

analysis over Dall and r showed in Figure 7.6c and 7.6d. We changed Dall from 12 to 16 with

the configuration ( N = 2000, Dout = 4, r = 1% ) and changed r within the range 1%− 5%

with the parameters (N = 2000, Dall = 16, Dout = 4), we found that EEPT, GEPT, and

FOA are flat over Dall and SC-FOA takes more time to process graphs with larger Dall and

r values.

7.4.3.2 Results on a Synthetic Evolving Graph

We created a synthetic evolving graph stream with the configuration N = 2400, T = 150,

Dall = 16, Dout = 4, and r = 1%. We showed the adjacency matrix of the initial graph G0

in Figure 7.7. The piecewise partitioned groups are easily identified from the block diagonal

matrix. We evaluated all five methods on the data. The experimental results on spectrum

approximation error and clustering performance are shown in Table 7.1. All of our methods

run faster than the standard approach while SC-FOA takes more time than STANDARD.

We ranked five methods with respect to their computational efficiency in the descending

123



order as: FOA, EEPT, GEPT, STANDARD, SC-FOA. Compared with STANDARD, FOA

has as high as more than 8 fold speed-up, EEPT gets more than 2 folds, GEPT gets 1.56

folds, and SC-FOA only has 0.29.

In Table 7.1, we found that larger eigen-pair approximation errors cause worse clustering

performance. Such finding indicates that the maximum canonical angle between invariant

subspaces may be a useful metric to measure accumulated error. We ranked five meth-

ods according to their clustering performance in the descending order as follows: EEPT,

STANDARD, GEPT, SC-FOA, FOA. EEPT. EEPT even shows better clustering perfor-

mance than STANDARD but only uses less than half of its computational time. The reason

may be that by incrementally updating the eigenpairs, EEPT incorporates the temporal

smoothness into the clustering procedure that adapts well to the evolutionary scenario of

our synthetic data. In Ning’s work [203], SC-FOA re-initialized after an arbitrary number

of similarity changes. In our experiment, for the purpose of having a good picture of the

performance of various incremental spectrum approximation techniques over time, we only

initialized SC-FOA under the conditions as the follows: (i) | λ̃t−λt |≥ 1; (ii) Condition ii in

Section 7.3.3. For a fair comparison, we re-initialized our methods GEPT and FOA when-

ever we restarted SC-FOA. For EEPT, we generally follow the policy described in subsection

7.3.3. In this experiment, EEPT only re-initialized twice at time 72 and 140 while GEPT,

FOA and SC-FOA re-initialized 3 times at time 43, 84, and 137.

7.4.3.3 Results on Real Facebook Data

The Facebook friendship network Gs with 531 users consists of 3 communities with 27, 235

and 269 users. We showed the adjacency matrices A(Gs) and A(G1
cp) in Figure 7.8. We

followed the heuristic showed in [253] to decide the k values. We used k = 3 from t = 1 to

t = 30 and k = 4 from t = 31 to t = 44.

With the increasing σ values, the frequency of re-initialization of EEPT decreased, the

computational performance improved, and the clustering accuracy dropped. Hence, the

124



1 200 400 531
531

400

200

1

N

N

(a) the friendship network

1 200 400 531
531

400

200

1

N

N

(b) a constrained activity
network G1

cp

Figure 7.8: The adjacency matrices of Facebook social network and constrained activity
network between 03/21/2008-03/28/2008

Table 7.2: The comparison of STANDARD, EEPT (σ = 20), GEPT, FOA, SC-FOA on real
Facebook wallposting data

tavg (s) accavg(%) RIavg(%) ninit

STANDARD 0.3135 100 100 0

EEPT (σ = 20) 0.2182 96.25 94.91 8

GEPT (nlimit = 3) 0.2517 85.49 84.77 3

FOA (nlimit = 3) 0.0869 64.06 64.26 3

SC-FOA (nlimit = 240) 1.3488 66.47 66.65 3

selection of σ is based on the trade-off between computational time and accuracy.

We selected EEPT (σ = 20) to compare with GEPT, FOA, and SC-FOA. The Facebook

constrained activity networks evolve smoothly most of time. There are only three large θ

value jump (θ > 20) at time 31, 37, and 39. The average number of similarity changes

between two consecutive matrices is 183. Hence, we set the parameter nlimit for GEPT,

FOA, and SC-FOA respectively as 14, 14 and 2400.

The results in Table 7.2 are consistent to our finding on the synthetic data. Among four

incremental approaches, EEPT has the best clustering accuracy and FOA is the most com-

putationally efficient approach. SC-FOA is the most computationally expensive approach.

7.4.3.4 Results on Real ASs Data

Compared with the well-partitioned synthetic graphs and smoothly evolving Facebook data,

the Autonomous Systems networks are more noisy. The clustering boundary may shift

125



Table 7.3: The comparison of STANDARD, EEPT (σ = 25), GEPT, FOA, SC-FOA on real ASs
network data

tavg (s) accavg(%) RIavg(%) ninit

STANDARD 17.34 100 100 0

EEPT (σ = 25) 13.34 94.73 92.21 43

GEPT (nlimit = 3) 18.12 93.33 90.03 37

FOA (nlimit = 3) 6.52 92.44 88.89 37

SC-FOA (nlimit = 240) 17.02 93.76 90.67 31

1 1000 2009
2009

1,000

1

N

(a) 11/11/1997

1 1000 2,009
2009

1,000

1

N

(b) 11/12/1997

Figure 7.9: The adjacency matrices of three successive ASs network snapshots collected at
time 11/11/1997 and 11/12/1997.

dramatically over time with routing pathes disappearing or emerging swiftly inter-days. In

Figure 7.9, we showed an example of dramatic change in the clustering outputs of two

successive ASs graph snapshots, where the clusters are the diagonal blocks in matrices.

We chose k = 5 through all of the 150 graphs and used EEPT with the configuration

σ = 25 to predict θ. The θ, θ̃ and σ values are the angle degrees between 0◦ − 90◦. When

θ̃ is not a real value, we set it as 90◦. We decided the θ and θ̃ binary levels by using the

threshold σ = 25. We found that in 78% of times θ̃ correctly predicts the levels of θ.

Same as the Facebook data, we treated the clustering output of STANDARD as the

benchmark. We selected EEPT (σ = 25) to compare with GEPT, FOA, and SC-FOA. We

set the parameter nlimit for GEPT, FOA, and SC-FOA according to the characteristic of

the data. The average time interval between two successive large θ value jump (σ > 25)

is 3.75 and the average number of similarity changes between two consecutive matrices is

73. Hence, we chose GEPT (nlimit = 4), FOA (nlimit = 4), and SC-FOA (nlimit = 280).

We showed the results both on computational time and clustering performance in Table 7.3.

The results further demonstrated the same finding both in synthetic and real Facebook data.

Although the numbers of similarity changes are very small, only 73 between time points, the

126



computational gain obtained by SC-FOA over STANDARD is still very limited. Hence, it

showed that the incremental spectral approach purely based on similarity change insertion

or deletion may not work well in many real applications.

127



Chapter 8

Conclusion and Future Work

8.1 Conclusion

In my dissertation, I presented a new online spectral clustering approach on social network

streams and our previous work on approximate graph mining with evolutionary process

from protein structure database, non-stationary Bayesian Network structure learning from

non-stationary microarray gene expression time series data, and Bayesian Network structure

learning with text priors imposed by non-parametric hierarchical topic modeling.

In community detection problem of Online Social Networks (OSNs), such as Facebook,

Twitter, and Linkedin, spectral clustering techniques have been demonstrated to be very

efficient models to identify communities with dense communications inside networks. To

address great computational challenges posed by the gigantic number (millions) of users

and their interactions in large network streams, we proposed an online spectral clustering

method ISSUER with three novel spectrum approximation algorithms: FOA (First Order

Approximation), GEPT (General Eigen Perturbation Theory) and EEPT (Enhanced Eigen

Perturbation Theory).

In protein motif detection problem, we encoded a protein structure as a geometric graph

where a node represents an amino acid residue and an edge represents a physical or a chem-

128



ical interaction between a pair of residues and encoded structural motifs as subgraphs of a

geometric graph. We identified conserved structure fingerprints by searching for frequently

occurring approximately subgraphs in a group of graph represented proteins. We devised a

frequent subgraph mining algorithm that are capable of identifying salient patterns in large

graph database that are otherwise overlooked by using exact matching due to the presence

of noises and distortions in the graph databases.

In the non-stationary Bayesian Network learning problem, the microarray gene expres-

sion data is characterized by small sample sizes and limited expressed levels. non-stationary

Dynamic Bayesian Network (non-stationary DBN) methods are widely used to model the

time-varying regulatory networks from non-stationary multivariate microarray time series

data. Change-point modeling is a very promising way of dealing with the non-stationarity

property. We proposed two new non-stationary algorithms with different change-point de-

tection techniques, Reversible Jump Markov Chain Monte Carlo (RJMCMC) and Perfect

Simulation model, to capture the structural dynamics of networks in various biological sys-

tems. In addition, we used non-parametric models to encode the unstructured text data to

enforce the prior domain knowledge in bayesian network structure learning procedure.

8.2 Future Work

Our future work has several directions. The first direction is parallel algorithm on online

spectral clustering methods. In our dissertation, we only show a serial algorithm that consists

of key operations that are well studied parallel computing problems. The MapReduce is a

parallel programming paradigm proposed by Google [68]. Recently it has been demonstrated

to be a very useful technique to improve the computational performance of machine learning

and data mining in various parallel platforms, such as clusters [68], GPGPU [114], multi-core

[221, 276], and FPGA [235]. Hence, to parallelize our method ISSUER to the MapReduce

framework will be further beneficial to massive data processing.

129



The second direction is bayesian network structure learning on large scale networks infer-

ence. The bayesian network structure learning problem is NP-hard [279]. However, most of

the existing work could only address networks of small sizes. Recently parallel algorithms on

bayesian network learning have started to attract interests of researchers, for example, the

parallel dynamic programming algorithm [246] and parallel shortest-path algorithm [180].

Hence, to design an efficient parallel non-stationary bayesian network learning algorithm

with bounded error and anytime properties [180] is beneficial in many applications.

The third direction is to use unstructured text information to bias bayesian network

structure inference. In many applications, the ground truthes may not be available and may

need to be provided by experts based on their latest domain knowledge, such as, biology [227,

102] and education [144]. And experts’ domain knowledge evolves over time. Documents, as

natural way to encode domain knowledge, could contain rich structured information [26, 25].

Utilizing the text data knowledge with the-state-of-art knowledge provided by experts to

bias the structure learning procedure will be beneficial to many applications. Our future

work in this field are to build quantitative criteria to judge the quality of the text encoded

knowledge.

130



Bibliography

[1] The arabidopsis information resource (tair) database. http://www.arabidopsis.

org/.

[2] Dynamic learning maps. http://www.dynamiclearningmaps.org/.

[3] Zeinab Abbassi and Vahab S. Mirrokni. A recommender system based on local random

walks and spectral methods. In Proceeding WebKDD/SNA-KDD ’07 Proceedings of the

9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network

analysis, 2007.

[4] Amira Abdelwahab, Hiroo Sekiya, Ikuo Matsuba, Yasuo Horiuchi, and Shingo

Kuroiwa. Collaborative filtering based on an iterative prediction method to alleviate

the sparsity problem. In Proceeding iiWAS ’09 Proceedings of the 11th International

Conference on Information Integration and Web-based Applications and Services, 2009.

[5] C. Aggarwal. Social network data analytics. Springer, 2011.

[6] C. Aggarwal and H.Wang. Managing and mining graph data. Springer, 2010.

[7] C. Aggarwal, N. Ta, J. Feng, J. Wang, and M. J. Zaki. Xproj: A framework for

projected structural clustering of xml documents. In Proceedings of the 2007 ACM

SIGKDD Conference on Knowledge Discovery and Data Mining, 2007.

[8] C. Aggarwal, N. Ta, J. Feng, J. Wang, and M. J. Zaki. Xproj: A framework for

131



projected structural clustering of xml documents. In Proceedings of KDD Conference

Proceedings (2007), page 46C55, 2007.

[9] C. Aggarwal, Y. Xie, and P. Yu. Gconnect: A connectivity index for massive disk-

resident graphs. In Proceedings of the 2009 Very Large Database (VLDB) Conference,

2009.

[10] C. Aggarwal, Y. Zhao, and P. Yu. Outlier detection in graph streams. In Proceedings

of the 2011 ICDE Conference.

[11] C. Aggarwal, Y. Zhao, and P. Yu. On clustering graph streams. In Proceedings of

SIAM Conf. on Data Mining, page 478C489, 2010.

[12] Charu C. Aggarwal. Managing and mining uncertain data. 2009.

[13] Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. Frequent pattern mining

with uncertain data. In Proceedings of the 2009 ACM SIGKDD international confer-

ence on Knowledge discovery and data mining (SIGKDD’09), pages 29–37, 2009.

[14] C. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. Koutsoukos. Local causal and

markov blanket induction for causal discovery and feature selection for classification

part ii: Analysis and extensions. JMLR, 11:235C284, 2010.

[15] C. Alpert, A.B. Kahng, and S.Z. Yao. Spectral partitioning with multiple eigenvectors.

Discrete Applied Mathematics, 90:3C26, 1999.

[16] Michelle N. Arbeitman, Eileen E. M. Furlong, Farhad Imam, Eric Johnson, Brian H.

Null, Bruce S. Baker, Mark A. Krasnow, Matthew P. Scott, Ronald W. Davis, and

Kevin P. White. Gene expression during the life cycle of drosophila melanogaster.

Science, 297(5590):2270–2275, 2002.

[17] Stephen Aylward and Stephen Pizer. Continuous gaussian mixture modeling. In Gindi

132



(Eds.), Information Processing in Medical Imaging. Springer Lecture Notes in Com-

puter Science 1230, pages 176–189, 1997.

[18] Francis R. Bach and Michael I. Jordan. Learning spectral clustering, with application

to speech separation. Journal of Machine Learning Research, 7, 2006.

[19] D. Bandyopadhyay and J. Snoeyink. Almost-Delaunay simplices : Nearest neighbor

relations for imprecise points. In ACM-SIAM Symposium On Distributed Algorithms,

pages 403–412, 2004.

[20] A.L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,

256:509–512, 1999.

[21] Matthew J. Beal, Zoubin Ghahramani, and Carl Edward Rasmussen. Factorial hidden

markov models. In Machine Learning, pages 29–245. MIT Press, 1997.

[22] Chris A. Benedict, Theresa A. Banks, Lionel Senderowicz, Mira Ko, William J. Britt,

Ana Angulo, Peter Ghazal, and Carl F. Ware. Lymphotoxins and cytomegalovirus

cooperatively induce interferon-b establishing host-virus detente. Immunity, 15:617–

626, 2001.

[23] Pavel Berkhin. Survey of clustering data mining techniques. Technical report, 2002.

[24] Allister Bernard and Alexander J. Hartemink. Informative structure priors: joint

learning of dynamic regulatory networks from multiple types of data. Proceedings of

Pacific Symposium on Biocomputing, pages 459–70, 2005.

[25] D. Blei, T. Griffiths, and M. Jordan. The nested chinese restaurant process and

bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2):1–30,

2010.

[26] D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum. Hierarchical topic models and

133



the nested chinese restaurant process. In Procceeding of 2003 Neural Information

Processing Systems Conference, 2003.

[27] C. Borgelt and M. R. Berhold. Mining molecular fragments: Finding relevant sub-

structures of molecules. In Proceedings of 2nd IEEE International Conference on Data

Mining (ICDM 02), pages 51–58, 2002.

[28] R. R. Bouckaert. Probabilistic network construction using the minimum description

length principle. Technical report RUU-CS-94-27.

[29] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical

Sociology, 25(2):163C177, 2001.

[30] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive

algorithm for collaborative filtering. In Proceedings of the 14 th Conference on Uncer-

tainty in Artificial Intelligence, pages 43–52, 1998.

[31] Derek C. Briggs. Making progress in the modeling of learning progressions. Learning

Progressions in Science, 4:345–355, 2012.

[32] F. Bromberg, D. Margaritis, and H. V. Efficient markov network structure discovery

using independence tests. JAIR, 35:449C485, 2009.

[33] Amit Bubna, Sanjiv Ranjan Das, and Nagpurnanand R. Prabhala. Venture

capital communities. Available at SSRN: http://ssrn.com/abstract=1787412 or

http://dx.doi.org/10.2139/ssrn.1787412, 2011.

[34] W. Buntine. A guide to the literature on learning probabilistic networks from data.

IEEE Transactions on Knowledge and Data Engineering, 8(2):195–210, 1996.

[35] Doug Burdick, Manuel Calimlim, and Johannes Gehrke. Mafia: A maximal frequent

itemset algorithm for transactional databases. In Proceedings of 2001 ICDE Confer-

ence, pages 443–452, 2001.

134



[36] J. Burge and T. Lane. Shrinkage estimator for bayesian network parameters. In Pro-

ceedings of the Eighteenth European Conference on Machine Learning (EMCL 2007),

2007.

[37] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary clustering. In

Proceedings of the 2006 annual ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2006.

[38] Jeffrey Chan, James Bailey, and Christopher Leckie. Discovering correlated spatio-

temporal changes in evolving graphs. Knowledge and Information Systems, 16(1):53–

96, 2008.

[39] P.K. Chan, M.D.F. Schlag, and J.Y. Zien. Spectral k-way ratio-cut partitioning and

clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, page 1088C1096, 1994.

[40] Moses Charikar, Chandra Chekuri, Tomas Feder, and Rajeev Motwani. Incremental

clustering and dynamic information retrieval. In Proceedings of the twenty-ninth annual

ACM symposium on Theory of computing, 1997.

[41] Moses Charikar, Chandra Chekuri, Tomas Feder, and Rajeev Motwani. Incremental

clustering and dynamic information retrieval. SIAM Journal on Computing, 33(6),

2004.

[42] C. Chen, C. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han. Mining graph

patterns efficiently via randomized summaries. In Proceedings of the 2009 Very Large

Database (VLDB) Conference, 2009.

[43] Chen Chen, Xifeng Yan, Feida Zhu, and Jiawei Han. gapprox: Mining frequent ap-

proximate patterns from a massive network. In Proceedings of the 2007 International

Conference on Data Mining (ICDM’07), 2007.

135



[44] Zheng Chen and Heng Ji. Graph-based clustering for computational linguistics: A

survey. In Proceedings of TextGraphs-5 - 2010 Workshop on Graph-based Methods for

Natural Language Processing, pages 1–9, 2010.

[45] C.K. Cheng and Y.C.A. Wei. An improved two-way partitioning algorithm with stable

performance. IEEE Transactions Computer-Aided Design, 10:1502–1511, 1991.

[46] D. Cheng, S. Vempala, R. Kannan, and G. Wang. A divideandmerge methodology for

clustering. In Proceedings of the Twentyfourth Symposium on Principles of Database

Systems, ACM Press, 2005.

[47] J. Cheng and M. J. Druzdzel. Ais-bn: An adaptive importance sampling algorithm

for evidential reasoning in large bayesian networks. Journal of Artificial Intelligence

Research, 13:155–188, 2000.

[48] Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L. Tseng. Evolutionary

spectral clustering by incorporating temporal smoothness. In Proceedings of the 13th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD 2007), pages 153–162, 2007.

[49] Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L. Tseng. On evo-

lutionary spectral clustering. ACM Transactions on Knowledge Discovery from Data

(TKDD), 3(4), November,2009.

[50] S. Chib and E. Greenberg. Understanding the metropolis hasting algorithm. Amer.

Statist, 49:327–335, 1995.

[51] D. M. Chickering, D. Geiger, and D. Heckerman. Learning bayesian networks: search

methods and experimental results. In Learning from Data: Artificial Intelligence and

Statistics, 1996.

136



[52] D. M. Chickering, D. Heckerman, and C. Meek. A bayesian approach to learning

bayesian networks with local structure. In Proceedings of the Thirteenth Annual Con-

ference on Uncertainty in Artificial Intelligence (UAI-97), 1997.

[53] David Maxwell Chickering. Learning equivalence classes of bayesian network struc-

tures. Journal of Machine Learning Research, 2:445–498, 2002.

[54] N. Chopin. Dynamic detection of change points in long time series. The Annals of the

Institute of Statistical Mathematics, 2006.

[55] F. Chung and L. Lu. Connected components in random graphs with given degree

sequences. Annals of Combinatories, 6:125–145, 2002.

[56] A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in very

large networks. Physical Review, 70(6), 2004.

[57] A. Condon and R.M. Karp. Algorithms for graph partitioning on the planted partition

model. Random Structures and Algorithms, 18(2):116C140, 2001.

[58] D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems,

15, 2000.

[59] G. F. Cooper. The computational complexity of probabilistic inference using bayesian

belief networks. Artificial Intelligence, 42:393–405, 1990.

[60] G. F. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic

networks from data. Machine Learning, 9(4):309C347, 1992.

[61] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-

gressions. Journal of Symbolic Computation, 9(3):251C280, 1990.

[62] Michael F. Covington, Satchidananda Panda, Xing Liang Liu, Carl A. Strayer, D. Ry

Wagner, and Steve A. Kay. Elf3 modulates resetting of the circadian clock in ara-

bidopsis. The Plant Cell, 13:1305–1315, 2001.

137



[63] Richard M. Cripps, Brian L. Black, Bin Zhao, Ching-Ling Lien, Robert A. Schulz, , and

Eric N. Olson. The myogenic regulatory gene mef2 is a direct target for transcriptional

activation by twist during drosophila myogenesis. Genes Dev., 12(3):422–34, 1998 Feb.

1.

[64] T. Dalamagas, T. Cheng, K. Winkel, and T. Sellis. Clustering xml documents using

structural summaries. Information Systems, Elsevier, 2005.

[65] R. Daly, Q. Shen, and S. Aitken. Learning bayesian networks: Approaches and issues.

The Knowledge Engineering Review, 2009.

[66] J. Davis and P. Domingos. Bottom-up learning of markov network structure. In

Proceedings of the 23rd international conference on Machine learning, page 271C278,

2010.

[67] L. M. de Campos and J. F. Huete. Approximating causal orderings for bayesian

networks using genetic algorithms and simulated annealing. In Proceedings of the Eight

Conference on Information Processing and Management of Uncertainty in Knowledge-

Based Systems, pages 333–340, 2000.

[68] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

Sixth Symposium on Operating System Design and Implementation (OSDI), 2004.

[69] I.S. Dhillon. Co-clustering documents and words using bipartite spectral graph parti-

tioning. In Proc. 7th Int. Conf. on Knowledge Discovery and Data mining, 2001.

[70] Frank Dondelinger, Sophie Lebre, and Dirk Husmeier. Heterogeneous continuous

dynamic bayesian networks with flexible structure and inter-time segment informa-

tion sharing. In Proceedings of 2010 International Conference on Machine Learning

(ICML10), 2010.

138



[71] L. Donetti and M.A. Munoz. Detecting network communities: A new systematic and

efficient algorithm. Journal of Statistical Mechanics, 2004.

[72] M. J. Druzdzel. Some properties of joint probability distributions. In Proceedings of

the Tenth Conference on Uncertainty in Artificial Intelligence, pages 187–194, 1994.

[73] H. Du, M.W. Feldman, S. Li, and X. Jin. An algorithm for detecting community

structure of social networks based on prior knowledge and modularity. Complexity,

12(3):53–60, 2007.

[74] Hong Duan and Hanh T. Nguyen. Distinct posttranscriptional mechanisms regulate the

activity of the zn finger transcription factor lame duck during drosophila myogenesis.

Molecular and Cellular Biology, 26(4):1414–1423, 2006 Feb.

[75] D. Eaton and K. Murphy. Bayesian structure learning using dynamic programming

and mcmc. In Proceedings of the Twenty-third Annual Conference on Uncertainty in

Artificial Intelligence (UAI-07), page 101C108, 2007.

[76] Sean R Eddy. Where did the blosum62 alignment score matrix come from. Nature

Biotechnology, 22:1035 – 1036, 2004.

[77] Paul Fearnhead. Exact and efficient bayesian inference for multiple changepoint prob-

lems. Statistics and Computing, 16:203–213, 2006.

[78] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum

bisection. SIAM Journal on Computing, 1090C1118, 2002.

[79] Fulvia Ferrazzi, S. Rinaldi, A. Parikh, G. Shaulsky, Blaz Zupan, and Riccardo Bel-

lazzi. Population models to learn bayesian networks from multiple gene expression

experiments. http://www.labmedinfo.org/biblio/author/326, 2008.

[80] G.W. Flake, R.E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and minimum cut

trees. Internet Mathematics, 1(1):385C408, 2004.

139



[81] S. Fortunato. Community detection in graphs. Physics Reports, page 75C174, 2010.

[82] S. Fortunato, V. Latora, and M. Marchiori. Method to find community structures

based on information centrality. Physical Review, 2004.

[83] Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry,

40(1):35–41, 1977.

[84] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using bayesian net-

works to analyze expression data. Journal of Computational Biology, 7(3-4):601–620,

2000.

[85] W. Fu. Penalized regressions: the bridge versus the lasso. Journal of Computational

and Graphical Statistics, 1998.

[86] Shouguo Gao and Xujing Wang. Quantitative utilization of prior biological knowledge

in the bayesian network modeling of gene expression data. BMC Bioinformatics, 2011.

[87] D. Geiger and D. Heckerman. Learning gaussian networks. Technical report MSR-TR-

94-10, 1994.

[88] Andrew Gelman and Donald B. Rubin. Inference from iterative simulation using mul-

tiple sequences. Statistical Science, 7:457C472, 1992.

[89] S. A. Gerschgorin. Uber die abgrenzung der eigenwerte einer matrix. Izv. Akad. Nauk

SSSR, Ser. Fiz.-Mat., 6:749–754, 1931.

[90] Zoubin Ghahramani. Advanced lectures on machine learning. Journal of the Royal

Statistical Society, 2004.

[91] M. Girvan and M. E. J. Newman. Community structure in social and biological net-

works. 2002.

140



[92] M. Girvan and M.E.J. Newman. Community structure in social and biological net-

works. In Proceedings of the National Academy of Sciences, page 8271C8276, 2001.

[93] M. Girvan and M.E.J. Newman. Community structure in social and biological net-

works. In Proceedings of the National Academy of Sciences, page 8271C8276, 2002.

[94] Christos Gkantsidis, Milena Mihail, and Ellen Zegura. Spectral analysis of internet

topologies. In Proceedings of IEEE INFOCOM 2003, pages 364 – 374, 2003.

[95] B. Goethals. Frequent set mining. The Data Mining and Knowledge Discovery Hand-

book, Chapter 17:377C397, 2005.

[96] G.H. Golub and C.F. Van Loan. Matrix computations. John Hopkins Press, 1989.

[97] G.H. Golub, S. S. Nash, and C. Van Loan. A hessenberg-schur method for the problem

ax + xb= c. IEEE Transactions on Automatic Control, 24(6):909 – 913, 1979.

[98] Aurelie Goulon, Arthur Duprat, and Gerard Dreyfus. Graph machines and their ap-

plications to computer-aided drug design: a new approach to learning from structured

data. Unconventional Computation, 4135:1–19, 2006.

[99] Nathan Green, Manjeet Rege, Xumin Liu, and Reynold Bailey. Evolutionary spectral

co-clustering. In Proceedings of The 2011 International Joint Conference on Neural

Networks (IJCNN), 2011.

[100] Peter J. Green. Reversible jump markov chain monte carlo computation and bayesian

model determination. Biometrika, 82:711–732, 1995.

[101] Peter J. Green. Trans-dimensional markov chain monte carlo. Highly Structured

Stochastic Systems, Oxford University Press, 2003.

[102] Marco Grzegorczy, Dirk Husmeier, Kieron D. Edwards, Peter Ghazal, , and Andrew J.

Millar. Modelling non-stationary gene regulatory processes with a non-homogeneous

bayesian network and the allocation sampler. Bioinformatics, 24:2071 – 2078, 2008.

141



[103] Marco Grzegorczyk and Dirk Husmeier. Improvements in the reconstruction of time-

varying gene regulatory networks: dynamic programming and regularization by infor-

mation sharing among genes. Journal of Bioinformatics, 27(5):693–699, 2011.

[104] M. Gu, H. Zha, C. Ding, X. He, and H. Simon. Spectral relaxation models and structure

analysis for k-way graph clustering and bi-clustering. Technical Report, 2001.

[105] Fan Guo, Steve Hanneke, Wenjie Pu, , and Eric P. Xing. Recovering temporally

rewiring networks: A model-based approach. ICML, 24, 2007.

[106] Haipeng Guo and William Hsu. A survey of algorithms for real-time bayesian network

inference. In The joint AAAI-02/KDD-02/UAI-02 workshop on Real-Time Decision

Support and Diagnosis Systems, 2002.

[107] Anshul Gupta and Vipin Kumar. Scalability of parallel algorithms for matrix multi-

plication. International Conference on Parallel Processing, 3:115 – 123, 1993.

[108] Manish Gupta, Charu C, Aggarwal, Jiawei Han, and Yizhou Sun. Evolutionary clus-

tering and analysis of bibliographic networks. In Proceedings of the 2011 International

Conference on Advances in Social Networks Analysis and Mining (ASONAM 2011),

pages 63–70, 2011.

[109] Fred G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and per-

muted transposition. ACM Transactions on Mathematical Software (TOMS), 4(3),

1978.

[110] Anthony Hall, Laszlo Kozma-Bognar, RekaToth, Ferenc Nagy, and Andrew J. Millar.

Conditional circadian regulation of phytochrome a gene expression. Plant Physiol.,

127(4):1808–18, 2001.

[111] K.M. Hall. An v-dimensional quadratic placement algorithm. Management Science,

17:219–229, 1970.

142



[112] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining: Cur-

rent status and future directions. Data Mining and Knowledge Discovery, 14, 2007.

[113] Alexander J. Hartemink, David K. Gifford, Tommi S. Jaakkola, and Richard A. Young.

Using graphical models and genomic expression data to statistically validate models

of genetic regulatory networks. Proceedings of Pacific Symposium on Biocomputing,

pages 422–433, 2001.

[114] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang.

Mars: A mapreduce framework on graphics processors. PACT, 2008.

[115] D. Heckerman and D. Geiger. Likelihoods and parameter priors for bayesian networks.

Technical report MSR-TR-95-54, 1995.

[116] David Heckerman. A tutorial on learning with bayesian networks. Technical report,

Learning in Graphical Models, 1995.

[117] David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning bayesian

networks: The combination of knowledge and statistical data. Machine Learning,

20(3):197–243, 1995.

[118] R. Hofmann and V. Tresp. Discovering structure in continuous variables using bayesian

networks. In Advances in Neural Information Processing Systems 8 (NIPS’95), 1995.

[119] L. B. Holder, D. J. Cook, and S. Djoko. Substructures discovery in the subdue system.

Proc. AAAI’94 Workshop Knowledge Discovery in Databases, pages 169–180, 1994.

[120] Kenya Honda, Akinori Takaoka, and Tadatsugu Taniguchi. Type i interferon gene

induction by the interferon regulatory factor family of transcription factors. Immunity,

25:349–360, 2006.

[121] Hsun-Ping Hsieh and Cheng-Te Li. Mining temporal subgraph patterns in hetero-

geneous information networks. In Proceedings of IEEE International Conference on

143



Social Computing / IEEE International Conference on Privacy, Security, Risk and

Trust.

[122] H. Hu, X. Yan, Y. Huang, J. Han, and X.J. Zhou. Mining coherent dense subgraphs

across massive biological networks for functional discovery. In Proceedings of the 2005

International Conference on Intelligent Systems for Molecular Biology (ISMB’05),

2005.

[123] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence

of isomorphism. In Proceedings of the 2003 IEEE International Conference on Data

Mining (ICDM’03), pages 549–552, 2003.

[124] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the presence

of isomorphism. In Proceedings of the 2003 International Conference on Data Mining

(ICDM’03), 2003.

[125] Jun Huan, Deepak Bandyopadhyay, Jack Snoeyink, Jan Prins, Alex Tropsha, and Wei

Wang. Distance-based identification of spatial motifs in proteins using constrained

frequent subgraph mining. In Proceedings of the IEEE Computational Systems Bioin-

formatics (CSB), 2006.

[126] Jun Huan, Jan Prins, Wei Wang, Charlie Carter, and Nikolay V. Dokholyan. Co-

ordinated evolution of protein sequences and structures with structure entropy. In

Computer Science Department Technical Report, 2006.

[127] Jun Huan, Wei Wang, Deepak Bandyopadhyay, Jack Snoeyink, Jan Prins, and Alexan-

der Tropsha. Mining family specific residue packing patterns from protein structure

graphs. In Proceedings of the 8th Annual International Conference on Research in

Computational Molecular Biology (RECOMB), pages 308–315, 2004.

[128] Jun Huan, Wei Wang, Jan Prins, , and Jiong Yang. Spin: Mining maximal frequent

144



subgraphs from graph databases. In Proceedings of the 10th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, pages 581–586, 2004.

[129] Dirk Husmeier. Sensitivity and specificity of inferring genetic regulatory interac-

tions from microarray experiments with dynamic bayesian networks. Bioinformatics,

19:2271–2282, 2003.

[130] Dirk Husmeier, Frank Dondelinger, and Sophie Lebre. Inter-time segment informa-

tion sharing for non-homogeneous dynamic bayesian networks. In Proceedings of 2010

Advances in Neural Information Processing Systems (NIPS), 2010.

[131] A. Hyvarinen and P. Dayan. Estimation of non-normalized statistical models by score

matching. Journal of Machine Learning Research, 6, 2005.

[132] Katja Ickstadt, Bjorn Bornkamp, Marco Grzegorczyk, Jakob Wieczorek, M. Rahuman

Sheriff, Hernan E. Grecco, and Eli Zamir. Nonparametric bayesian networks. In:

Bernardo, Bayarri, Berger, Dawid, Heckerman, Smith, and West (eds): Bayesian

Statistics 9, Oxford University Press, 2010.

[133] Seiya Imoto, Takao Goto, and Satoru Miyano. Estimation of genetic networks and

functional structures between genes by using bayesian networks and nonparametric

regression. Proceedings of Pacific Symposium on Biocomputing, pages 175–186, 2002.

[134] Seiya Imoto, Tomoyuki Higuchi, Takao Goto, Kousuke Tashiro, Satoru Kuhara, and

Satoru Miyano. Combining microarrays and biological knowledge for estimating

gene networks via bayesian networks. Computer Society Bioinformatics Conference

(CSB’03), page 104, 2003.

[135] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining fre-

quent substructures from graph data. In Proceeding of 2000 Practice of Knowledge

Discovery in Databases Conference (PKDD’00), pages 13–23, 2000.

145



[136] A.K JAIN, M.N. MURTY, and P.J. FLYNN. Data clustering: a review. ACM Com-

puting Surveys, 31(3):264–323, 1999.

[137] G. M. James, T. J. Hastie, and C. A. Sugar. Principal component models for sparse

functional data. Biometrika, 87(3):587–602, 2000.

[138] J. N. R. Jeffers. Two case studies in the application of principal component analysis.

Journal of the Royal Statistical Society: Series C, 16(3):225–236, 1967.

[139] Yi Jia, Vincent Buhr, Jintao Zhang, Jun Huan, and Leonidas N. Carayannopoulos.

Comprehensive structural motif mining for better fold annotation. In Proceedings of

the APBC2009 Conference (Asia Pacific Bioinformatics Conference), 2009.

[140] Yi Jia, Vincent Buhr, Jintao Zhang, Jun Huan, and Leonidas N. Carayannopoulos.

Towards comprehensive structural motif mining for better fold annotation in the “twi-

light zone” of sequence dissimilarity. Journal of BMC Bioinformatics, 10(Suppl 1),

2009.

[141] Yi Jia and Jun Huan. Constructing non-stationary dynamic bayesian networks with a

flexible lag choosing mechanism. BMC Bioinformatics, 2010.

[142] Yi Jia, Jun Huan, and Hongguo Xu. Issuer: an online spectral clustering method for

network data streams. In Proceedings of the 2012 ICDM Conference (submitted), 2012.

[143] Yi Jia, Jun Huan, and Jintao Zhang. An efficient graph mining method for complicated

and noisy data with real-world applications. Knowledge and Information Systems: An

International Journal (KAIS), 28(2), 2010.

[144] Yi Jia, Tom Walsh, and Fei Zhao. Bayesian network structure learning with text

regularity. Technical Report, 2012.

[145] Yi Jia, Wenrong Zen, and Jun Huan. Non-stationary bayesian networks based on

perfect simulation. In Proceedings of the 2012 ACM CIKM Conference, 2012.

146



[146] M. I. Jordan. Graphical models. Statistical Science, 19:140C155, 2004.

[147] M. I. Jordan, Z. Ghahramani, T. S. Jaakola, , and L. K. Saul. An introduction to

variational methods for graphical models. Learning in Graphical Models, pages 105–

161, 1999.

[148] JE Darnell Jr, IM Kerr, and GR Stark. Jak-stat pathways and transcriptional activa-

tion in response to ifns and other extracellular signaling proteins. Science, 264:1415–

1421, 1994.

[149] Kara A. Judson, John M. Lubinski, Ming Jiang, Yueh Chang, Roselyn J. Eisenberg,

Gary H. Cohen, and Harvey M. Friedman. Blocking immune evasion as a novel

approach for prevention and treatment of herpes simplex virus infection. J. Virol,

77:12639–12645, 2003.

[150] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and

spectral. In IEEE Symposium on Foundations of Computer Science, pages 367–377,

2000.

[151] Brian Karrer, Elizaveta Levina, and M. E. J. Newman. Robustness of community

structure in networks. Physical Review, 77(4), 2008.

[152] Karypis and V. Kumar. Multilevel algorithms for multiconstraint graph partitioning.

In Proceedings of the 36th ACM/IEEE conference on Design automation conference,

pages 343–348, 1999.

[153] Yoshinobu Kawahara and Masashi Sugiyama. Change-point detection in time-series

data by direct densityratio estimation. In Proceedings of 2009 SIAM International

Conference on Data Mining (SDM09), 2009.

[154] Min-Soo Kim and Jiawei Han. A particle-and-density based evolutionary clustering

147



method for dynamic networks. In Proceedings of the 2009 International Conference on

Very Large Databases (VLDB), volume 2(1), 2009.

[155] Sun Yong Kim, Seiya Imoto, and Satoru Miyano. Inferring gene networks from time

series microarray data using dynamic bayesian networks. Brief Bioinform, 4:228–235,

2003.

[156] Alexandre Klementiev, Dan Roth, , and Kevin Small. An unsupervised learning algo-

rithm for rank aggregation. In Proceedings of the 2007 ECML Conference, 2007.

[157] D. Koller and N. Friedman. Probabilistic graphical models. Massachusetts: MIT Press,

2009.

[158] Tengteng Kong, Ye Tian, and Hong Shen. A fast incremental spectral clustering for

large data sets. In Proceedings of International Conference on Parallel and Distributed

Computing, Applications and Technologies (PDCAT), 2011.

[159] Mirko Krivanek and Jaroslav Moravek. Np-hard problems in hierarchical-tree cluster-

ing. Journal Acta Informatica, 23(3), 1986.

[160] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of the

2001 International Conference on Data Mining (ICDM’01), pages 313–320, 2001.

[161] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. In

Proceedings of the SIAM International Conference on Data Mining, 2004.

[162] Mikls Kurucz, Andrs A Benczr, Kroly Csalogny, and Lszl Lukcs. Spectral clustering

in social networks. Advances in Web Mining and Web Usage Analysis, 91:1–20, 2007.

[163] Mayank Lahiri and Tanya Y. Berger-Wolf. Periodic subgraph mining in dynamic

networks. Knowledge and Information Systems, Onine First, 09/2009.

148



[164] Mayank Lahiri and Tanya Y. Berger-Wolf. Structure prediction in temporal networks

using frequent subgraphs. Computational Intelligence and Data Mining, 2007, pages

35–42, 2007.

[165] K. Lakshmi and T. Meyyappan. Frequent subgraph mining algorithms - a survey

and framework for classification. In Proceedings of First International Conference on

Information Technology Convergence and Services ( ITCS 2012 ), 2012.

[166] Helge Langsetha, Thomas D. Nielsenb, Rafael Rumi, and Antonio Salmeron. Mix-

tures of truncated basis functions. International Journal of Approximate Reasoning,

53(2):212–227, 2012.

[167] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, and Y. Yurramendi. Learning bayesian

network structures by searching for the best ordering with genetic algorithms. In IEEE

Transactions on Systems, Man and Cybernetics, volume 26(4), pages 487–93, 1996.

[168] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on

graphical structures and their applications to expert systems. In Proceedings of the

Royal Statistical Society, volume 50, pages 154–227, 1988.

[169] M. Lavielle and G. Teyssiree. Adaptive detection of multiple change-points in asset

price volatility. Long Memory in Economics, page 129C156, 2005.

[170] Sophie Lebre, Jennifer Becq, Frederic Devaux, Michael Stumpf, and Gaelle Lelandais.

Statistical inference of the time-varying structure of gene regulation networks. BMC

Systems Biology, 4(1):130, 2010.

[171] Seak Fei Lei and Jun Huan. Towards site-based function annotations for protein

structures. In Proceedings of the IEEE International Conference on Bioinformatics

and Biomedicine ( BIBM’08 ), pages 193–198, 2008.

149



[172] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws,

shrinking diameters and possible explanations. In Proceedings of the 2005 annual

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD), 2005.

[173] Jure Leskovec, Lada Adamic, and Bernardo Huberman. The dynamics of viral mar-

keting. In In EC 06: Proceedings of the 7th ACM conference on Electronic commerce,

pages 228–237. ACM Press, 2005.

[174] Jianzhong Li, Yong Liu, and Hong Gao. Efficient algorithms for summarizing graph

patterns. IEEE Transactions On Knowledge And Data Engineering, 23(9), 2011.

[175] Shao Li, Lijiang Wu, and Zhongqi Zhang. Constructing biological networks through

combined literature mining and microarray analysis: a lmma approach. Journal of

Bioinformatics, 2006.

[176] Yifan Li, Jiawei Han, and Jiong Yang. Clustering moving objects. In Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery and data

mining, 2004.

[177] Yong Liu, Jianzhong Li, and Hong Gao. Jpminer: Mining frequent jump patterns from

graph databases. In Proceedings of Sixth International Conference on Fuzzy Systems

and Knowledge Discovery, 2009.

[178] Robert Lund and Jaxk Reeves. Detection of undocumented changepoints: a revision

of the two-phase regression model. J. Climate, 2002.

[179] D. MacKay. Introduction to monte carlo methods. Learning in graphical models, 1998.

[180] Brandon Malone and Changhe Yuan. A parallel, anytime, bounded error algorithm

for exact bayesian network structure learning. In Proceedings of the Sixth European

Workshop on Probabilistic Graphical Models (PGM-12).

150



[181] D. Margaritis. Distribution-free learning of bayesian network structure in continuous

domains. In Proceedings of 2005 AAAI, 2005.

[182] D. Margaritis and F. Bromberg. Efficient markov network discovery using particle

filter. Comp. Intel., 25(4):367C394, 2009.

[183] Paloma Mas. Circadian clock function in arabidopsis thaliana: time beyond transcrip-

tion. Trends Cell Biology, 18:273–181, 2008.

[184] Claire Mathieu, Ocan Sankur, and Warren Schudy. Online correlation clustering.

arXiv:1001.0920v2, 2010.

[185] Harley H. McAdams and Adam Arkin. Stochastic mechanisms in gene expression.

Proceeding of the National Academy of Science, 94(3):814–819, 1997.

[186] A. McCallum. Efficiently inducing features of conditional random fields. In Proceedings

of Uncertainty in Artificial Intelligence (UAI), 2003.

[187] M. Meila and J. Shi. A random walks view of spectral segmentation. In Proceedings

of the Eighth International Workshop on Artificial Intelligence and Statistics, 2001.

[188] T. Minka. Algorithms for maximum-likelihood logistic regression. Technical report,

2001.

[189] T. Minka. Power ep. Technical Report MSR-TR-2004-149, Microsoft Research, 2004.

[190] Takeshi Mizuno and Norihito Nakamichi. Pseudo-response regulators (prrs) or true

oscillator components (tocs). Plant Cell Physiol., 46(5):677–685, 2005.

[191] S. Monti and G. F. Cooper. Learning bayesian belief networks with neural network

estimators. In Advances in Neural Information Processing Systems 9 (NIPS’96), 1996.

151



[192] V. Moskvina and A. Zhigljavsky. An algorithm based on singular spectrum analy-

sis for changepoint detection. Communications in Statistics Part B: Simulation and

Computation, 2003.

[193] Kevin Murphy and Saira Mian. Modeling gene expression data using dynamic bayesian

networks. Technical Report, 1999.

[194] Mohamadreza Najiminaini, Laxmi Subedi, and Ljiljana Trajkovic. Analysis of internet

topologies: A historical view. In Proceedings of 2009 IEEE International Symposium

on Circuits and Systems (ISCAS), pages 1697 – 1700, 2009.

[195] N. Nariai, Sun Yong Kim, Seiya Imoto, and Satoru Miyano. Using protein-protein

interactions for refining gene networks estimated from microarray data by bayesian

networks. Pacific Symposium on Biocomputing, 9:336–347, 2004.

[196] Maria C.V. Nascimento and Andre C.P.L.F. de Carvalho. Spectral methods for graph

clustering - a survey. European Journal of Operational Research, 211(2):221–231, 2011.

[197] Radford M. Neal. Markov chain sampling methods for dirichlet process mixture models.

Journal of Computational and Graphical Statistics, 9:249–265, 2000.

[198] M.E.J. Newman. Finding community structure in networks using the eigenvectors of

matrices. Physical Review, 74:036C104, 2006.

[199] M.E.J. Newman and M. Girvan. Finding and evaluating community structure in net-

works. Physical Review, 69, 2004.

[200] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.

Advances in Neural Information Processing Systems, 14:849C856, 2002.

[201] S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference.

In Proceedings of the 2004 SIGKDD Conference, page 647C652, 2004.

152



[202] S. Nijssen and J.N. Kok. A quickstart in frequent structure mining can make a differ-

ence. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 647–652, 2004.

[203] Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas Huang. Incremental

spectral clustering with application to monitoring of evolving blog communities. In

SIAM International Conference on Data Mining, 2007.

[204] Agostino Nobile and Alastair T. Fearnside. Bayesian finite mixtures with an unknown

number of components: The allocation sampler. Statistics and Computing, 17:147–162,

2007.

[205] C.A. Orengo, A.D. Michie, S. Jones, D.T. Jones, M.B. Swindells, and J.M. Thornton.

CATH - a hierarchic classification of protein domain structures. Structure, 5(8):1093–

1108, 1997.

[206] Larry Page. Pagerank: Bringing order to the web. Technical report, 1997.

[207] P. Pakzad and V. Anantharam. Belief propagation and statistical physics. In Proceed-

ings of the conference on Information Science and Systems, 2002.

[208] Alessia Para, Eva M. Farre, Takato Imaizumi, Jose L. Pruneda-Paz, Franklin G. Har-

mon, and Steve A. Kay. Prr3 is a vascular regulator of toc1 stability in the arabidopsis

circadian clock. Plant Cell, 19(11):3462–73, 2007.

[209] J. Pearl. A constraint-propagation approach to probabilistic reasoning. Uncertainty

in Artificial Intelligence, pages 3718–382, 1986.

[210] J. Pearl. Fusion, propagation and structuring in belief networks. UCLA Computer

Science Department Technical Report, 29(3):241–288, 1986.

[211] J. Pearl. Efficient algorithms for summarizing graph patterns. Morgan Kaufmann,

1988.

153



[212] J. Pearl. Probabilistic reasoning in intelligent systems. 1988.

[213] Judea Pearl. Heuristics: Intelligent search strategies for computer problem solving.

Addison-Wesley, 1983.

[214] T. Penzl. Numerical solution of generalized lyapunov equations. Advances in Comp.

Math., 8:33–48, 1998.

[215] A. Pievatolo and Peter J. Green. Bounary detection through dynamic polygons. Jour-

nal of the Royal Statistical Society, Series B 60:609–626, 1998.

[216] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications

in speech recognition. In Proceedings of the IEEE, pages 257–286, 1989.

[217] L. De Raedt and S. Kramer. The levelwise version space algorithm and its appli-

cation to molecular fragment finding. In IJCAI’01: Seventeenth International Joint

Conference on Artificial Intelligence, 2:853–859, 2001.

[218] Pradeep Rai and Shubha Singh. A survey of clustering techniques. International

Journal of Computer Applications, 7(12), 2010.

[219] William M. Rand. Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association (American Statistical Association),

66(336):846–850, 1971.

[220] A. Ranganathan. The dirichlet process mixture (dpm) model. Technical report, Georgia

Institute of Technology, 2006.

[221] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, , and Christos

Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In Pro-

ceedings of the 13th Intl. 4 Symposium on High-Performance Computer Architecture

(HPCA).

154



[222] Arvind Rao, Alfred O. Hero III, David J. States, and James Douglas Engel. Inferring

time-varying network topologies from gene expression data. EURASIP Journal on

Bioinformatics and Systems Biology, 2007.

[223] P. Ravikumar, M. J.Wainwright, and J. D. Lafferty. High-dimensional ising model

selection using l1-regularized logistic regression. Annals of Statistics, 38:1287C1319,

2010.

[224] Sobia Raza, Kevin A Robertson, Paul A Lacaze, David Page, Anton J Enright, Peter

Ghazal, and Tom C Freeman. A logic-based diagram of signalling pathways central to

macrophage activation. BMC System Biology, 2:Article 36, 2008.

[225] Paul Resnick and Hal R. Varian. Recommender systems. In Communications of the

ACM, volume 40(3), 1997.

[226] J. Rissanen. Stochastic complexity in statistical inquiry. World Scientific Publishing

Company, 1989.

[227] Joshua W Robinson and Alexander J Hartemink. Non-stationary dynamic bayesian

networks. Procedding of Advances in Neural Information Processing Systems Confer-

ence, 2008.

[228] Patrice A. Salome and C. Robertson McClung. The arabidopsis thaliana clock. Journal

of Biological Rhythms, 19(5):425–435, 2004.

[229] Thomas Sandmann, Lars J. Jensen, Janus S. Jakobsen, Michal M. Karzynski,

Michael P. Eichenlaub, Peer Bork, and Eileen E.M. Furlong. Da temporal map of

transcription factor activity: mef2 directly regulates target genes at all stages of mus-

cle development. Dev Cell, 10(6):797–807, 2006 Jun.

[230] E. J. Santos and S. E. Shimony. Deterministic approximation of marginal probabilities

155



in bayes nets. IEEE Transactions on Systems, Man, and Cybernetics, 28(4):377–393,

1998.

[231] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[232] Federico Schluter. A survey on independence-based markov networks learning.

arXiv:1108.2283, 2011.

[233] R. Shachter. Intelligent probabilistic inference. Uncertainty in Artificial Intelligence,

pages 371–382, 1986.

[234] R. Shachter. Evidence absorption and propagation through evidence reversals. Uncer-

tainty in Artificial Intelligence, pages 173–190, 1990.

[235] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang. Fpmr:

Mapreduce framework on fpga a case study of rankboost acceleration. In Proceedings

of the FPGA’10.

[236] Han Lin Shang. A survey of functional principal component analysis. Technical report,

2010.

[237] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22:888–905, 2000.

[238] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Transactions on PAMI, 22(8):888, 2000.

[239] Sandip Sinharay. Model diagnostics for bayesian networks. Journal of Educational and

Behavioral Statistics, 31:1C33, 2006.

[240] Le Song, Mladen Kolar, and Eric Xing. Time-varying dynamic bayesian networks.

NIPS, 2009.

156



[241] D.A. Spielman and S.H. Teng. Nearlylinear time algorithms for graph partitioning,

graph sparsification, and solving linear systems. Proceedings of the Thirtysixth Annual

Symposium on Theory of Computing, 2004.

[242] P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search. Adaptive

Computation and Machine Learning Series, 2000.

[243] E. Steele, A. Tucker, P.A.C. ’t Hoen, and M.J. Schuemie. Literature-based priors for

gene regulatory networks. Journal of Bioinformatics, 2009.

[244] G.W. Stewart and J.G. Sun. Matrix pertubation theory. Academic Press, 1990.

[245] Laxmi Subedi and Ljiljana Trajkovic. Spectral analysis of internet topology graphs. In

Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS),

pages 1803 – 1806, 2010.

[246] Yoshinori Tamada, Seiya Imoto, and Satoru Miyano. Parallel algorithm for learen-

ing optimal bayesian network structure. Journal of Machine Learning Research,

12:2437C2459, 2011.

[247] Lei Tang, Huan Liu, Jianping Zhang, and Zohreh Nazeri. Community evolution in

dynamic multi-mode networks. In Proceedings of the 2008 annual ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2008.

[248] Christoffer Valgren, Tom duckett, and Achim Lilienthal. Incremental spectral cluster-

ing and its application to topological mapping. In Proceedings of IEEE International

Conference on Robotics and Automation, 2007.

[249] S.M. van Dongen. Graph clustering by flow simulation. Ph.D. Thesis, 2000.

[250] R. A. van Engelen. Approximating bayesian belief networks by arc removal. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19(8):916– 920, 1997.

157



[251] S. V. N. Vishwanathan, N. N. Schraudolph, M.W. Schmidt, and K. P. Murphy. Ac-

celerated training of conditional random fields with stochastic gradient methods. In

Proceedings of the 23rd international conference on Machine learning, page 969C976,

2006.

[252] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. On the

evolution of user interaction in facebook. In Proceedings of the 2nd ACM SIGCOMM

Workshop on Social Networks (WOSN’09), 2009.

[253] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing,

17(4):395–416, 2007.

[254] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-reweighted belief propa-

gation algorithms and approximate ml estimation by pseudo-moment matching. In

Proceedings of 2003 AISTATS, 2003.

[255] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families,

and variational inference. Machine Learning, 1(1-2):1–305, 2008.

[256] G. Wang, R. L. Dunbrack, and Jr. PISCES. A protein sequence culling server. Bioin-

formatics, 19:1589–1591, 2003.

[257] H. Wang, K. Yu, and H. Yao. Learning dynamic bayesian networks using evolutionary

mcmc. In Proceedings of the International Conference on Computational Intelligence

and Security, pages 45–50, 2006.

[258] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In Proceeding

of the 2004 international conference on data engineering (ICDE04), page 79C90, 2004.

[259] Y. Weiss and W. Freeman. Correctness of belief propagation in gaussian graphical

models of arbitrary topology. In Proceedings of NIPS’99, 1999.

158



[260] Cheng-Hsiung Weng and Yen-Liang Chen. Mining fuzzy association rules from uncer-

tain data. Knowledge and Information Systems, 23(2):129–152, 2010.

[261] Adriano V Werhli, , and Dirk Husmeier. Gene regulatory network reconstruction by

bayesian integration of prior knowledge and/or dirent experimental conditions. Journal

of Bioinformatics and Computational Biology, 6(3):543–572, 2008.

[262] Adriano V. Werhli, Marco Grzegorczyk, and Dirk Husmeier. Comparative evaluation

of reverse engineering gene regulatory networks with relevance networks, graphical

gaussian models and bayesian networks. Bioinformatics, 20(22):2523–2531, 2006.

[263] Scott White and Padhraic Smyth. A spectral clustering approach to finding commu-

nities in graphs. In Proceedings of the 2005 SIAM Data Mining Conference, 2005.

[264] J. H. Wilkinson. The algebraic eigenvalue problem. Clarenon Press, 1965.

[265] J. Winn and C. M. Bishop. Variational message passing. J. Mach. Learn. Res.,

6:661C694, 2005.

[266] Kein S. Xu, Mark Kliger, and Alfred O. Hero III. Adaptive evolutionary clustering.

arXiv:1104.1990v1, 2011.

[267] Kevin S. Xu, Mark Kliger, and Algred O. Hero III. Evolutionary spectral clustering

with adaptive forgetting factor. In Proceedings of IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2010.

[268] Kuai Xu, Feng Wang, and Lin Gu. Network-aware behavior clustering of internet end

hosts. In Proceedings of IEEE INFOCOM 2011, pages 2078 – 2086, 2011.

[269] Katsutoshi Yada, Hiroshi Motoda, Takashi Washio, and Asuka Miyawaki. Consumer

behavior analysis by graph mining technique. Lecture Notes in Computer Science,

pages 800–806, 2004.

159



[270] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Procceeding

of International Conference on Data Mining (ICDM’02), pages 721–724, 2002.

[271] X. Yan and J. Han. Closegraph: Mining closed frequentgraph patterns. In Proc. 9th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD 03), pages 286–295, 2003.

[272] Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan: Mining closed sequential patterns

in large datasets. In Proceedings of 2003 SDM Conference, pages 166–177, 2003.

[273] Xifeng Yan, Feida Zhu, Philip S. Yu, and Jiawei Han. Feature-based substructure

similarity search. ACM Transactions on Database Systems, 31(4):1418–1453, 2006.

[274] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations and

generalized belief propagation algorithms. IEEE Transactions on Information Theory,

51(7), 2005.

[275] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In

Proceedings of Thirteenth NIPS, 2001.

[276] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis. Phoenix rebirth: Scalable

mapreduce on a large-scale shared-memory system. In Proceedings of the 2009 IEEE

International Symposium on Workload Characterization (IISWC).

[277] Haiyuan Yu, Nicholas M. Luscombe, Jiang Qian, and Mark Gerstein. Genomic analysis

of gene expression relationships in transcriptional regulatory networks. Trends Genet,

19:422–7, 2003.

[278] Jing Yu, V. Anne Smith, Paul P. Wang, Alexander J. Hartemink, and Erich D. Jarvis.

Advances to bayesian network inference for generating causal networks from observa-

tional biological data. Bioinformatics, 20:3594–3603, 2004.

160



[279] Changhe Yuan and Brandon Malone. An improved admissible heuristic for learning

optimal bayesian networks. In Proceedings of the 28th Conference on Uncertainty in

Artificial Intelligence (UAI-12), Catalina Island, CA, 2012.

[280] N. L. Zhang and D. Poole. A simple approach to bayesian network computations.

In Proc. of the Tenth Canadian Conference on Artificial Intelligence, pages 171–178,

1994.

[281] Shijie Zhang and Jiong Yang. Ram: Randomized approximate graph mining export.

Scientific and Statistical Database Management, 2008.

[282] Shijie Zhang, Jiong Yang, and V. Cheedella. Monkey: Approximate graph mining

based on spanning trees. In Proceeding of IEEE 23rd International ConferenceData

Engineering (ICDE’07), pages 1247–1249, 2007.

[283] Wentao Zhao, Erchin Serpedin, and Edward R. Dougherty. Inferring gene regula-

tory networks from time series data using the minimum description length principle.

Bioinformatics, 22(17):2129–2135, 2006.

[284] Wentao Zhao, Erchin serpedin, and Edward R. Dougherty. Inferring gene regulatory

networks from time series data using the minimum description length principle. Bioin-

formatics, 22(17):2129–2135, 2006.

[285] V. Ziegler. Approximation algorithms for restricted bayesian network structures. In-

formation Processing Letters, 108(2):60C63, 2008.

[286] Min Zou and Suzanne D. Conzen. A new dynamic bayesian network (dbn) approach for

identifying gene regulatory networks from time course microarray data. Bioinformatics,

21:71–79, 2004.

[287] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. Frequent subgraph pattern

161



mining on uncertain graph data. In Proceedings of the 2009 Conference on Information

and Knowledge Management (CIKM’09), pages 583–592, 2009.

162


