12,743 research outputs found

    Artimate: an articulatory animation framework for audiovisual speech synthesis

    Get PDF
    We present a modular framework for articulatory animation synthesis using speech motion capture data obtained with electromagnetic articulography (EMA). Adapting a skeletal animation approach, the articulatory motion data is applied to a three-dimensional (3D) model of the vocal tract, creating a portable resource that can be integrated in an audiovisual (AV) speech synthesis platform to provide realistic animation of the tongue and teeth for a virtual character. The framework also provides an interface to articulatory animation synthesis, as well as an example application to illustrate its use with a 3D game engine. We rely on cross-platform, open-source software and open standards to provide a lightweight, accessible, and portable workflow.Comment: Workshop on Innovation and Applications in Speech Technology (2012

    A Mimetic Strategy to Engage Voluntary Physical Activity In Interactive Entertainment

    Full text link
    We describe the design and implementation of a vision based interactive entertainment system that makes use of both involuntary and voluntary control paradigms. Unintentional input to the system from a potential viewer is used to drive attention-getting output and encourage the transition to voluntary interactive behaviour. The iMime system consists of a character animation engine based on the interaction metaphor of a mime performer that simulates non-verbal communication strategies, without spoken dialogue, to capture and hold the attention of a viewer. The system was developed in the context of a project studying care of dementia sufferers. Care for a dementia sufferer can place unreasonable demands on the time and attentional resources of their caregivers or family members. Our study contributes to the eventual development of a system aimed at providing relief to dementia caregivers, while at the same time serving as a source of pleasant interactive entertainment for viewers. The work reported here is also aimed at a more general study of the design of interactive entertainment systems involving a mixture of voluntary and involuntary control.Comment: 6 pages, 7 figures, ECAG08 worksho

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Animated virtual agents to cue user attention: comparison of static and dynamic deictic cues on gaze and touch responses

    Get PDF
    This paper describes an experiment developed to study the performance of virtual agent animated cues within digital interfaces. Increasingly, agents are used in virtual environments as part of the branding process and to guide user interaction. However, the level of agent detail required to establish and enhance efficient allocation of attention remains unclear. Although complex agent motion is now possible, it is costly to implement and so should only be routinely implemented if a clear benefit can be shown. Pevious methods of assessing the effect of gaze-cueing as a solution to scene complexity have relied principally on two-dimensional static scenes and manual peripheral inputs. Two experiments were run to address the question of agent cues on human-computer interfaces. Both experiments measured the efficiency of agent cues analyzing participant responses either by gaze or by touch respectively. In the first experiment, an eye-movement recorder was used to directly assess the immediate overt allocation of attention by capturing the participant’s eyefixations following presentation of a cueing stimulus. We found that a fully animated agent could speed up user interaction with the interface. When user attention was directed using a fully animated agent cue, users responded 35% faster when compared with stepped 2-image agent cues, and 42% faster when compared with a static 1-image cue. The second experiment recorded participant responses on a touch screen using same agent cues. Analysis of touch inputs confirmed the results of gaze-experiment, where fully animated agent made shortest time response with a slight decrease on the time difference comparisons. Responses to fully animated agent were 17% and 20% faster when compared with 2-image and 1-image cue severally. These results inform techniques aimed at engaging users’ attention in complex scenes such as computer games and digital transactions within public or social interaction contexts by demonstrating the benefits of dynamic gaze and head cueing directly on the users’ eye movements and touch responses

    Improving users’ comprehension of changes with animation and sound: an empirical assessment

    Get PDF
    Animation or sound is often used in user interfaces as an attempt to improve users' perception and comprehension of evolving situations and support them in decision-making. However, empirical data establishing their real effectiveness on the comprehension of changes are still lacking. We have carried out an experiment using four combinations of visual and auditory feedback in a split attention task. The results not only confirm that such feedback improves the perception of changes, but they also demonstrate that animation and sound used alone or combined bring major improvements on the comprehension of a changing situation. Based on these results, we propose design guidelines about the most efficient combinations to be used in user interfaces

    A Motion Control Scheme for Animating Expressive Arm Movements

    Get PDF
    Current methods for figure animation involve a tradeoff between the level of realism captured in the movements and the ease of generating the animations. We introduce a motion control paradigm that circumvents this tradeoff-it provides the ability to generate a wide range of natural-looking movements with minimal user labor. Effort, which is one part of Rudolf Laban\u27s system for observing and analyzing movement, describes the qualitative aspects of movement. Our motion control paradigm simplifies the generation of expressive movements by proceduralizing these qualitative aspects to hide the non-intuitive, quantitative aspects of movement. We build a model of Effort using a set of kinematic movement parameters that defines how a figure moves between goal keypoints. Our motion control scheme provides control through Effort\u27s four dimensional system of textual descriptors, providing a level of control thus far missing from behavioral animation systems and offering novel specification and editing capabilities on top of traditional keyframing and inverse kinematics methods. Since our Effort model is inexpensive computationally, Effort-based motion control systems can work in real-time. We demonstrate our motion control scheme by implementing EMOTE (Expressive MOTion Engine), a character animation module for expressive arm movements. EMOTE works with inverse kinematics to control the qualitative aspects of end-effector specified movements. The user specifies general movements by entering a sequence of goal positions for each hand. The user then expresses the essence of the movement by adjusting sliders for the Effort motion factors: Space, Weight, Time, and Flow. EMOTE produces a wide range of expressive movements, provides an easy-to-use interface (that is more intuitive than joint angle interpolation curves or physical parameters), features interactive editing, and real-time motion generation

    Synopsis of an engineering solution for a painful problem Phantom Limb Pain

    Get PDF
    This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of “mirror box” therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients’ interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone

    Wearable performance

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2009 Taylor & FrancisWearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment. Wearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment
    • …
    corecore