109 research outputs found

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components

    Wireless Communication Technologies for Safe Cooperative Cyber Physical Systems

    Get PDF
    Cooperative Cyber-Physical Systems (Co-CPSs) can be enabled using wireless communication technologies, which in principle should address reliability and safety challenges. Safety for Co-CPS enabled by wireless communication technologies is a crucial aspect and requires new dedicated design approaches. In this paper, we provide an overview of five Co-CPS use cases, as introduced in our SafeCOP EU project, and analyze their safety design requirements. Next, we provide a comprehensive analysis of the main existing wireless communication technologies giving details about the protocols developed within particular standardization bodies. We also investigate to what extent they address the non-functional requirements in terms of safety, security and real time, in the different application domains of each use case. Finally, we discuss general recommendations about the use of different wireless communication technologies showing their potentials in the selected real-world use cases. The discussion is provided under consideration in the 5G standardization process within 3GPP, whose current efforts are inline to current gaps in wireless communications protocols for Co-CPSs including many future use casesinfo:eu-repo/semantics/publishedVersio

    Experimental measurements of a joint 5G-VLC communication for future vehicular networks

    Full text link
    One of the main revolutionary features of 5G networks is the ultra-low latency that will enable new services such as those for the future smart vehicles. The 5G technology will be able to support extreme-low latency. Thanks to new technologies and the wide flexible architecture that integrates new spectra and access technologies. In particular, Visible Light Communication (VLC) is envisaged as a very promising technology for vehicular communications, since the information can flow by using the lights (as traffic-lights and car lights). This paper describes one of the first experiments on the joint use of 5G and VLC networks to provide real-time information to cars. The applications span from road safety to emergency alarm

    Automotive Intelligence Embedded in Electric Connected Autonomous and Shared Vehicles Technology for Sustainable Green Mobility

    Get PDF
    The automotive sector digitalization accelerates the technology convergence of perception, computing processing, connectivity, propulsion, and data fusion for electric connected autonomous and shared (ECAS) vehicles. This brings cutting-edge computing paradigms with embedded cognitive capabilities into vehicle domains and data infrastructure to provide holistic intrinsic and extrinsic intelligence for new mobility applications. Digital technologies are a significant enabler in achieving the sustainability goals of the green transformation of the mobility and transportation sectors. Innovation occurs predominantly in ECAS vehicles’ architecture, operations, intelligent functions, and automotive digital infrastructure. The traditional ownership model is moving toward multimodal and shared mobility services. The ECAS vehicle’s technology allows for the development of virtual automotive functions that run on shared hardware platforms with data unlocking value, and for introducing new, shared computing-based automotive features. Facilitating vehicle automation, vehicle electrification, vehicle-to-everything (V2X) communication is accomplished by the convergence of artificial intelligence (AI), cellular/wireless connectivity, edge computing, the Internet of things (IoT), the Internet of intelligent things (IoIT), digital twins (DTs), virtual/augmented reality (VR/AR) and distributed ledger technologies (DLTs). Vehicles become more intelligent, connected, functioning as edge micro servers on wheels, powered by sensors/actuators, hardware (HW), software (SW) and smart virtual functions that are integrated into the digital infrastructure. Electrification, automation, connectivity, digitalization, decarbonization, decentralization, and standardization are the main drivers that unlock intelligent vehicles' potential for sustainable green mobility applications. ECAS vehicles act as autonomous agents using swarm intelligence to communicate and exchange information, either directly or indirectly, with each other and the infrastructure, accessing independent services such as energy, high-definition maps, routes, infrastructure information, traffic lights, tolls, parking (micropayments), and finding emergent/intelligent solutions. The article gives an overview of the advances in AI technologies and applications to realize intelligent functions and optimize vehicle performance, control, and decision-making for future ECAS vehicles to support the acceleration of deployment in various mobility scenarios. ECAS vehicles, systems, sub-systems, and components are subjected to stringent regulatory frameworks, which set rigorous requirements for autonomous vehicles. An in-depth assessment of existing standards, regulations, and laws, including a thorough gap analysis, is required. Global guidelines must be provided on how to fulfill the requirements. ECAS vehicle technology trustworthiness, including AI-based HW/SW and algorithms, is necessary for developing ECAS systems across the entire automotive ecosystem. The safety and transparency of AI-based technology and the explainability of the purpose, use, benefits, and limitations of AI systems are critical for fulfilling trustworthiness requirements. The article presents ECAS vehicles’ evolution toward domain controller, zonal vehicle, and federated vehicle/edge/cloud-centric based on distributed intelligence in the vehicle and infrastructure level architectures and the role of AI techniques and methods to implement the different autonomous driving and optimization functions for sustainable green mobility.publishedVersio

    Augmenting CCAM Infrastructure for Creating Smart Roads and Enabling Autonomous Driving

    Get PDF
    Autonomous vehicles and smart roads are not new concepts and the undergoing development to empower the vehicles for higher levels of automation has achieved initial milestones. However, the transportation industry and relevant research communities still require making considerable efforts to create smart and intelligent roads for autonomous driving. To achieve the results of such efforts, the CCAM infrastructure is a game changer and plays a key role in achieving higher levels of autonomous driving. In this paper, we present a smart infrastructure and autonomous driving capabilities enhanced by CCAM infrastructure. Meaning thereby, we lay down the technical requirements of the CCAM infrastructure: identify the right set of the sensory infrastructure, their interfacing, integration platform, and necessary communication interfaces to be interconnected with upstream and downstream solution components. Then, we parameterize the road and network infrastructures (and automated vehicles) to be advanced and evaluated during the research work, under the very distinct scenarios and conditions. For validation, we demonstrate the machine learning algorithms in mobility applications such as traffic flow and mobile communication demands. Consequently, we train multiple linear regression models and achieve accuracy of over 94% for predicting aforementioned demands on a daily basis. This research therefore equips the readers with relevant technical information required for enhancing CCAM infrastructure. It also encourages and guides the relevant research communities to implement the CCAM infrastructure towards creating smart and intelligent roads for autonomous driving

    Wireless communication, sensing, and REM: A security perspective

    Get PDF
    The diverse requirements of next-generation communication systems necessitate awareness, flexibility, and intelligence as essential building blocks of future wireless networks. The awareness can be obtained from the radio signals in the environment using wireless sensing and radio environment mapping (REM) methods. This is, however, accompanied by threats such as eavesdropping, manipulation, and disruption posed by malicious attackers. To this end, this work analyzes the wireless sensing and radio environment awareness mechanisms, highlighting their vulnerabilities and provides solutions for mitigating them. As an example, the different threats to REM and its consequences in a vehicular communication scenario are described. Furthermore, the use of REM for securing communications is discussed and future directions regarding sensing/REM security are highlighted

    A framework for the synergistic integration of fully autonomous ground vehicles with smart city

    Get PDF
    Most of the vehicle manufacturers aim to deploy level-5 fully autonomous ground vehicles (FAGVs) on city roads in 2021 by leveraging extensive existing knowledge about sensors, actuators, telematics and Artificial Intelligence (AI) gained from the level-3 and level-4 autonomy. FAGVs by executing non-trivial sequences of events with decimetre-level accuracy live in Smart City (SC) and their integration with all the SC components and domains using real-time data analytics is urgent to establish better swarm intelligent systems and a safer and optimised harmonious smart environment enabling cooperative FAGVs-SC automation systems. The challenges of urbanisation, if unmet urgently, would entail severe economic and environmental impacts. The integration of FAGVs with SC helps improve the sustainability of a city and the functional and efficient deployment of hand over wheels on robotized city roads with behaviour coordination. SC can enable the exploitation of the full potential of FAGVs with embedded centralised systems within SC with highly distributed systems in a concept of Automation of Everything (AoE). This paper proposes a synergistic integrated FAGV-SC holistic framework - FAGVinSCF in which all the components of SC and FAGVs involving recent and impending technological advancements are moulded to make the transformation from today's driving society to future's next-generation driverless society smoother and truly make self-driving technology a harmonious part of our cities with sustainable urban development. Based on FAGVinSCF, a simulation platform is built both to model the varying penetration levels of FAGV into mixed traffic and to perform the optimal self-driving behaviours of FAGV swarms. The results show that FAGVinSCF improves the urban traffic flow significantly without huge changes to the traffic infrastructure. With this framework, the concept of Cooperative Intelligent Transportation Systems (C-ITS) is transformed into the concept of Automated ITS (A-ITS). Cities currently designed for cars can turn into cities developed for citizens using FAGVinSCF enabling more sustainable cities
    • …
    corecore