225,576 research outputs found

    A New Fundamental Evidence of Non-Classical Structure in the Combination of Natural Concepts

    Full text link
    We recently performed cognitive experiments on conjunctions and negations of two concepts with the aim of investigating the combination problem of concepts. Our experiments confirmed the deviations (conceptual vagueness, underextension, overextension, etc.) from the rules of classical (fuzzy) logic and probability theory observed by several scholars in concept theory, while our data were successfully modeled in a quantum-theoretic framework developed by ourselves. In this paper, we isolate a new, very stable and systematic pattern of violation of classicality that occurs in concept combinations. In addition, the strength and regularity of this non-classical effect leads us to believe that it occurs at a more fundamental level than the deviations observed up to now. It is our opinion that we have identified a deep non-classical mechanism determining not only how concepts are combined but, rather, how they are formed. We show that this effect can be faithfully modeled in a two-sector Fock space structure, and that it can be exactly explained by assuming that human thought is the supersposition of two processes, a 'logical reasoning', guided by 'logic', and a 'conceptual reasoning' guided by 'emergence', and that the latter generally prevails over the former. All these findings provide a new fundamental support to our quantum-theoretic approach to human cognition.Comment: 14 pages. arXiv admin note: substantial text overlap with arXiv:1503.0426

    On the Foundations of the Brussels Operational-Realistic Approach to Cognition

    Get PDF
    The scientific community is becoming more and more interested in the research that applies the mathematical formalism of quantum theory to model human decision-making. In this paper, we provide the theoretical foundations of the quantum approach to cognition that we developed in Brussels. These foundations rest on the results of two decade studies on the axiomatic and operational-realistic approaches to the foundations of quantum physics. The deep analogies between the foundations of physics and cognition lead us to investigate the validity of quantum theory as a general and unitary framework for cognitive processes, and the empirical success of the Hilbert space models derived by such investigation provides a strong theoretical confirmation of this validity. However, two situations in the cognitive realm, 'question order effects' and 'response replicability', indicate that even the Hilbert space framework could be insufficient to reproduce the collected data. This does not mean that the mentioned operational-realistic approach would be incorrect, but simply that a larger class of measurements would be in force in human cognition, so that an extended quantum formalism may be needed to deal with all of them. As we will explain, the recently derived 'extended Bloch representation' of quantum theory (and the associated 'general tension-reduction' model) precisely provides such extended formalism, while remaining within the same unitary interpretative framework.Comment: 21 page

    Quantum Structure in Cognition, Origins, Developments, Successes and Expectations

    Full text link
    We provide an overview of the results we have attained in the last decade on the identification of quantum structures in cognition and, more specifically, in the formalization and representation of natural concepts. We firstly discuss the quantum foundational reasons that led us to investigate the mechanisms of formation and combination of concepts in human reasoning, starting from the empirically observed deviations from classical logical and probabilistic structures. We then develop our quantum-theoretic perspective in Fock space which allows successful modeling of various sets of cognitive experiments collected by different scientists, including ourselves. In addition, we formulate a unified explanatory hypothesis for the presence of quantum structures in cognitive processes, and discuss our recent discovery of further quantum aspects in concept combinations, namely, 'entanglement' and 'indistinguishability'. We finally illustrate perspectives for future research.Comment: 25 pages. arXiv admin note: text overlap with arXiv:1412.870

    Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory

    Full text link
    Inspired by a quantum mechanical formalism to model concepts and their disjunctions and conjunctions, we put forward in this paper a specific hypothesis. Namely that within human thought two superposed layers can be distinguished: (i) a layer given form by an underlying classical deterministic process, incorporating essentially logical thought and its indeterministic version modeled by classical probability theory; (ii) a layer given form under influence of the totality of the surrounding conceptual landscape, where the different concepts figure as individual entities rather than (logical) combinations of others, with measurable quantities such as 'typicality', 'membership', 'representativeness', 'similarity', 'applicability', 'preference' or 'utility' carrying the influences. We call the process in this second layer 'quantum conceptual thought', which is indeterministic in essence, and contains holistic aspects, but is equally well, although very differently, organized than logical thought. A substantial part of the 'quantum conceptual thought process' can be modeled by quantum mechanical probabilistic and mathematical structures. We consider examples of three specific domains of research where the effects of the presence of quantum conceptual thought and its deviations from classical logical thought have been noticed and studied, i.e. economics, decision theory, and concept theories and which provide experimental evidence for our hypothesis.Comment: 14 page

    A Potentiality and Conceptuality Interpretation of Quantum Physics

    Full text link
    We elaborate on a new interpretation of quantum mechanics which we introduced recently. The main hypothesis of this new interpretation is that quantum particles are entities interacting with matter conceptually, which means that pieces of matter function as interfaces for the conceptual content carried by the quantum particles. We explain how our interpretation was inspired by our earlier analysis of non-locality as non-spatiality and a specific interpretation of quantum potentiality, which we illustrate by means of the example of two interconnected vessels of water. We show by means of this example that philosophical realism is not in contradiction with the recent findings with respect to Leggett's inequalities and their violations. We explain our recent work on using the quantum formalism to model human concepts and their combinations and how this has given rise to the foundational ideas of our new quantum interpretation. We analyze the equivalence of meaning in the realm of human concepts and coherence in the realm of quantum particles, and how the duality of abstract and concrete leads naturally to a Heisenberg uncertainty relation. We illustrate the role played by interference and entanglement and show how the new interpretation explains the problems related to identity and individuality in quantum mechanics. We put forward a possible scenario for the emergence of the reality of macroscopic objects.Comment: 20 pages, 1 figur

    Experimental Evidence for Quantum Structure in Cognition

    Full text link
    We proof a theorem that shows that a collection of experimental data of membership weights of items with respect to a pair of concepts and its conjunction cannot be modeled within a classical measure theoretic weight structure in case the experimental data contain the effect called overextension. Since the effect of overextension, analogue to the well-known guppy effect for concept combinations, is abundant in all experiments testing weights of items with respect to pairs of concepts and their conjunctions, our theorem constitutes a no-go theorem for classical measure structure for common data of membership weights of items with respect to concepts and their combinations. We put forward a simple geometric criterion that reveals the non classicality of the membership weight structure and use experimentally measured membership weights estimated by subjects in experiments to illustrate our geometrical criterion. The violation of the classical weight structure is similar to the violation of the well-known Bell inequalities studied in quantum mechanics, and hence suggests that the quantum formalism and hence the modeling by quantum membership weights can accomplish what classical membership weights cannot do.Comment: 12 pages, 3 figure

    Quantum Interaction Approach in Cognition, Artificial Intelligence and Robotics

    Full text link
    The mathematical formalism of quantum mechanics has been successfully employed in the last years to model situations in which the use of classical structures gives rise to problematical situations, and where typically quantum effects, such as 'contextuality' and 'entanglement', have been recognized. This 'Quantum Interaction Approach' is briefly reviewed in this paper focusing, in particular, on the quantum models that have been elaborated to describe how concepts combine in cognitive science, and on the ensuing identification of a quantum structure in human thought. We point out that these results provide interesting insights toward the development of a unified theory for meaning and knowledge formalization and representation. Then, we analyze the technological aspects and implications of our approach, and a particular attention is devoted to the connections with symbolic artificial intelligence, quantum computation and robotics.Comment: 10 page

    Quantum Structure in Cognition: Why and How Concepts are Entangled

    Full text link
    One of us has recently elaborated a theory for modelling concepts that uses the state context property (SCoP) formalism, i.e. a generalization of the quantum formalism. This formalism incorporates context into the mathematical structure used to represent a concept, and thereby models how context influences the typicality of a single exemplar and the applicability of a single property of a concept, which provides a solution of the 'Pet-Fish problem' and other difficulties occurring in concept theory. Then, a quantum model has been worked out which reproduces the membership weights of several exemplars of concepts and their combinations. We show in this paper that a further relevant effect appears in a natural way whenever two or more concepts combine, namely, 'entanglement'. The presence of entanglement is explicitly revealed by considering a specific example with two concepts, constructing some Bell's inequalities for this example, testing them in a real experiment with test subjects, and finally proving that Bell's inequalities are violated in this case. We show that the intrinsic and unavoidable character of entanglement can be explained in terms of the weights of the exemplars of the combined concept with respect to the weights of the exemplars of the component concepts.Comment: 10 page
    • …
    corecore