5 research outputs found

    Design and Development IoT based Smart Energy Management Systems in Buildings through LoRa Communication Protocol

    Get PDF
    Energy management is a vital tool for reducing significant supply-side deficits and increasing the efficiency of power generation. The present energy system standard emphasizes lowering the total cost of power without limiting consumption by opting to lower electricity use during peak hours. The previous problem necessitates the development and growth of a flexible and mobile technology that meets the needs of a wide variety of customers while preserving the general energy balance. In order to replace a partial load decrease in a controlled manner, smart energy management systems are designed, according to the preferences of the user, for the situation of a full power loss in a particular region. Smart Energy Management Systems incorporate cost-optimization methods based on human satisfaction with sense input features and time of utilization. In addition to developing an Internet of Things (IoT) for data storage and analytics, reliable LoRa connectivity for residential area networks is also developed. The proposed method is named as LoRa_bidirectional gated recurrent neural network (LoRa_ BiGNN) model which achieves 0.11 and 0.13 of MAE, 0.21 and 0.23 of RMSE, 0.34 and 0.23 of MAPE for heating and cooling loads

    Conceptualization of an information system for integrated management of public transport

    Get PDF
    Software requirements are key elements that contribute to the quality of systems and stakeholders\u27 satisfaction. In the domain of public transport, many information systems have been developed; however, the majority is focused on operational planning and public transport control, discarding the strategic-tactical levels of action. While at operational level management, the control is usually centered on public transport providers, at the strategic and tactical levels, a close interaction from distinct types of stakeholders is required. Moreover, management is distinct among cities. This work aims to define the conceptualization of a configurable decision support system (DSS) for the tactical-strategic management of public transport. The various needs and perspectives of the stakeholders are taken into account, and the data used as a basis have high granularity

    Directive transportation in smart cities with line connectivity at distinctive points using mode control algorithm

    Get PDF
    This article examines the operational functionality of intelligent transport systems to enhance smart cities by reducing traffic congestion. Given the increasing populations of smart cities, there is a growing demand for public transit systems to address the issue of traffic congestion. Therefore, the suggested system is developed using a few parametric design models, which combine point-to-point protocol and mode control optimization. The multi-objective parametric design for a smart transportation system is conducted using min–max functions to minimize the waiting time period for end users. Furthermore, customers are given the option to utilize a line following mechanism that offers suitable connectivity, along with independent identification and revitalize functions. The predicted model effectively eliminates the delay produced by transportation devices when positioning units are involved, ensuring that individual messages are delivered without any interruptions. In order to evaluate the results of the proposed system model, four different scenarios were examined. A comparison analysis revealed that the suggested method achieves a suitable directional flow for 96% of smart transport units. Additionally, it reduces delays and waiting periods by 2% and 6% respectively, while increasing energy consumption by 29%
    corecore