15,913 research outputs found

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Evaluation of graphical user interfaces for augmented reality based manual assembly support

    Get PDF
    Augmented reality (AR) technology is advancing rapidly and promises benefits to a wide variety of applications&mdashincluding manual assembly and maintenance tasks. This thesis addresses the design of user interfaces for AR applications, focusing specifically on information presentation interface elements for assembly tasks. A framework was developed and utilized to understand and classify these elements, as well as to evaluate numerous existing AR assembly interfaces from literature. Furthermore, a user study was conducted to investigate the strengths and weaknesses of concrete and abstract AR interface elements in an assembly scenario, as well as to compare AR assembly instructions against common paper-based assembly instructions. The results of this study supported, at least partially, the three hypotheses that concrete AR elements are more suitable to convey part manipulation information than abstract AR elements, that concrete AR and paper-based instructions lead to faster assembly times than abstract AR instructions alone, and that concrete AR instructions lead to greater increases in user confidence than paper-based instructions. The study failed to support the hypothesis that abstract AR elements are more suitable for part identification than concrete AR elements. Finally, the study results and hypothesis conclusions are used to suggest future work regarding interface element design for AR assembly applications

    C-blox: A Scalable and Consistent TSDF-based Dense Mapping Approach

    Full text link
    In many applications, maintaining a consistent dense map of the environment is key to enabling robotic platforms to perform higher level decision making. Several works have addressed the challenge of creating precise dense 3D maps from visual sensors providing depth information. However, during operation over longer missions, reconstructions can easily become inconsistent due to accumulated camera tracking error and delayed loop closure. Without explicitly addressing the problem of map consistency, recovery from such distortions tends to be difficult. We present a novel system for dense 3D mapping which addresses the challenge of building consistent maps while dealing with scalability. Central to our approach is the representation of the environment as a collection of overlapping TSDF subvolumes. These subvolumes are localized through feature-based camera tracking and bundle adjustment. Our main contribution is a pipeline for identifying stable regions in the map, and to fuse the contributing subvolumes. This approach allows us to reduce map growth while still maintaining consistency. We demonstrate the proposed system on a publicly available dataset and simulation engine, and demonstrate the efficacy of the proposed approach for building consistent and scalable maps. Finally we demonstrate our approach running in real-time on-board a lightweight MAV.Comment: 8 pages, 5 figures, conferenc

    A Study of Technology Innovations and Applications in Transforming Safety and Security in Healthcare Facility Management

    Get PDF
    The increasing complexity of construction projects has transformed the Architecture, Engineering, and Construction (AEC) industry through technology adoption over the last decade. But, Facility Management (FM) as an industry has been slow in technology adoption. Growing market competition, corporate demands and new ways of attracting clients for owners are compelling FM professionals to be more efficient. This requirement is driving technology adoption by FM professionals. This study identifies technologies adopted by Healthcare Facility Management (HFM) professionals for improving safety and security of users that have capabilities and conceived and/or developed applications that can or in some cases are at present used in HFM. Simultaneously, it also looks into potentials and capabilities of a handful of other technologies in further improving safety and security. Using Literature-Based Discovery (LBD), the technology applications and innovations aimed towards safety and security are discovered from the literature that falls within the purview of HFM to form a picture of how these technologies enhance the practice of FM. The study aims at detecting how technologies have contributed towards transforming user experience. Also, this study identifies existing technologies and innovation demands (knowledge and gaps in knowledge), a general understanding of technology, its use and capabilities, and its recognition by users and industry professionals (adoption/rejection). They serve to illustrate how and to what degree the technologies will come to be used in facility management. Technologies, as they mature, will come to be used by facility managers in similar functions and hypothetically, entirely new ones. One should create a better user experience tailored to the functionality demanded. It is important for facility managers to partner with technology companies presenting innovative solutions to create a platform that is tailored to user-specific needs. Acceptance of a unified process, together with input from users, facility managers, and an assessment of current technologies and new advances in practice are productive ways to develop technologies that drive user satisfaction. This paper works to illustrate a future vision of HFM based on these technologies. Healthcare facility managers will have a reference that assembles multiple technological proficiencies that can function in their practice going forward

    MonoSLAM: Real-time single camera SLAM

    No full text
    Published versio

    A Cybersecurity Model for a Roblox-based Metaverse Architecture Framework

    Get PDF
    The adoption of virtual reality VR and augmented reality AR headsets in futuristic and science fiction has made it possible for the Metaverse to exist as a single universal immersive virtual universe By extending technology outside of our physical reality the Metaverse alters the human experience The four categories we use to categorize metaverse definitions are environment interface interaction and social value Currently it is unclear what the metaverse s structure and elements are A cybersecurity framework for these devices is necessary as the world grows more interconnected and immersive technologies are increasingly widely used in business government and consumer markets Used was a literature revie
    • …
    corecore