1,472 research outputs found

    Objective and subjective assessment of perceptual factors in HDR content processing

    Get PDF
    The development of the display and camera technology makes high dynamic range (HDR) image become more and more popular. High dynamic range image give us pleasant image which has more details that makes high dynamic range image has good quality. This paper shows us the some important techniques in HDR images. And it also presents the work the author did. The paper is formed of three parts. The first part is an introduction of HDR image. From this part we can know why HDR image has good quality

    Optimal exposure compression for high dynamic range content

    Get PDF
    High dynamic range (HDR) imaging has become one of the foremost imaging methods capable of capturing and displaying the full range of lighting perceived by the human visual system in the real world. A number of HDR compression methods for both images and video have been developed to handle HDR data, but none of them has yet been adopted as the method of choice. In particular, the backwards-compatible methods that always maintain a stream/image that allow part of the content to be viewed on conventional displays make use of tone mapping operators which were developed to view HDR images on traditional displays. There are a large number of tone mappers, none of which is considered the best as the images produced could be deemed subjective. This work presents an alternative to tone mapping-based HDR content compression by identifying a single exposure that can reproduce the most information from the original HDR image. This single exposure can be adapted to fit within the bit depth of any traditional encoder. Any additional information that may be lost is stored as a residual. Results demonstrate quality is maintained as well, and better, than other traditional methods. Furthermore, the presented method is backwards-compatible, straightforward to implement, fast and does not require choosing tone mappers or settings

    High Dynamic Range Imaging Technology.

    Get PDF
    Abstract: In this lecture note, we describe high dynamic range (HDR) imaging systems. Such systems are able to represent luminances of much larger brightness and, typically, a larger range of colors than conventional standard dynamic range (SDR) imaging systems. The larger luminance range greatly improves the overall quality of visual content, making it appear much more realistic and appealing to observers. HDR is one of the key technologies in the future imaging pipeline, which will change the way the digital visual content is represented and manipulated today

    A general approach to backwards-compatible delivery of high dynamic range images and video

    Full text link

    A simplified HDR image processing pipeline for digital photography

    Get PDF
    High Dynamic Range (HDR) imaging has revolutionized the digital imaging. It allows capture, storage, manipulation, and display of full dynamic range of the captured scene. As a result, it has spawned whole new possibilities for digital photography, from photorealistic to hyper-real. With all these advantages, the technique is expected to replace the conventional 8-bit Low Dynamic Range (LDR) imaging in the future. However, HDR results in an even more complex imaging pipeline including new techniques for capturing, encoding, and displaying images. The goal of this thesis is to bridge the gap between conventional imaging pipeline to the HDR’s in as simple a way as possible. We make three contributions. First we show that a simple extension of gamma encoding suffices as a representation to store HDR images. Second, gamma as a control for image contrast can be ‘optimally’ tuned on a per image basis. Lastly, we show a general tone curve, with detail preservation, suffices to tone map an image (there is only a limited need for the expensive spatially varying tone mappers). All three of our contributions are evaluated psychophysically. Together they support our general thesis that an HDR workflow, similar to that already used in photography, might be used. This said, we believe the adoption of HDR into photography is, perhaps, less difficult than it is sometimes posed to be

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies

    Towards a High Quality Real-Time Graphics Pipeline

    Get PDF
    Modern graphics hardware pipelines create photorealistic images with high geometric complexity in real time. The quality is constantly improving and advanced techniques from feature film visual effects, such as high dynamic range images and support for higher-order surface primitives, have recently been adopted. Visual effect techniques have large computational costs and significant memory bandwidth usage. In this thesis, we identify three problem areas and propose new algorithms that increase the performance of a set of computer graphics techniques. Our main focus is on efficient algorithms for the real-time graphics pipeline, but parts of our research are equally applicable to offline rendering. Our first focus is texture compression, which is a technique to reduce the memory bandwidth usage. The core idea is to store images in small compressed blocks which are sent over the memory bus and are decompressed on-the-fly when accessed. We present compression algorithms for two types of texture formats. High dynamic range images capture environment lighting with luminance differences over a wide intensity range. Normal maps store perturbation vectors for local surface normals, and give the illusion of high geometric surface detail. Our compression formats are tailored to these texture types and have compression ratios of 6:1, high visual fidelity, and low-cost decompression logic. Our second focus is tessellation culling. Culling is a commonly used technique in computer graphics for removing work that does not contribute to the final image, such as completely hidden geometry. By discarding rendering primitives from further processing, substantial arithmetic computations and memory bandwidth can be saved. Modern graphics processing units include flexible tessellation stages, where rendering primitives are subdivided for increased geometric detail. Images with highly detailed models can be synthesized, but the incurred cost is significant. We have devised a simple remapping technique that allowsfor better tessellation distribution in screen space. Furthermore, we present programmable tessellation culling, where bounding volumes for displaced geometry are computed and used to conservatively test if a primitive can be discarded before tessellation. We introduce a general tessellation culling framework, and an optimized algorithm for rendering of displaced Bézier patches, which is expected to be a common use case for graphics hardware tessellation. Our third and final focus is forward-looking, and relates to efficient algorithms for stochastic rasterization, a rendering technique where camera effects such as depth of field and motion blur can be faithfully simulated. We extend a graphics pipeline with stochastic rasterization in spatio-temporal space and show that stochastic motion blur can be rendered with rather modest pipeline modifications. Furthermore, backface culling algorithms for motion blur and depth of field rendering are presented, which are directly applicable to stochastic rasterization. Hopefully, our work in this field brings us closer to high quality real-time stochastic rendering
    • …
    corecore