354 research outputs found

    ArcFace: Additive Angular Margin Loss for Deep Face Recognition

    Get PDF
    One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that enhance discriminative power. Centre loss penalises the distance between the deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in an angular space and penalises the angles between the deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to the exact correspondence to the geodesic distance on the hypersphere. We present arguably the most extensive experimental evaluation of all the recent state-of-the-art face recognition methods on over 10 face recognition benchmarks including a new large-scale image database with trillion level of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state-of-the-art and can be easily implemented with negligible computational overhead. We release all refined training data, training codes, pre-trained models and training logs, which will help reproduce the results in this paper.Comment: ArcFace with parallel acceleratio

    Minimum margin loss for deep face recognition

    Get PDF
    Face recognition has achieved great progress owing to the fast development of the deep neural network in the past a few years. As an important part of deep neural networks, a number of the loss functions have been proposed which significantly improve the state-of-the-art methods. In this paper, we proposed a new loss function called Minimum Margin Loss (MML) which aims at enlarging the margin of those overclose class centre pairs so as to enhance the discriminative ability of the deep features. MML supervises the training process together with the Softmax Loss and the Centre Loss, and also makes up the defect of Softmax + Centre Loss. The experimental results on MegaFace, LFW and YTF datasets show that the proposed method achieves the state-of-the-art performance, which demonstrates the effectiveness of the proposed MML
    • …
    corecore