2,589 research outputs found

    Design of a New Bilayer Multipole Electromagnetic Brake System for a Haptic Interface

    Get PDF
    This paper deals with the design, simulation and experimental verification of a new bilayer multipole electromagnetic brake. The design utilizes the superposition principle of magnetic flux across the inner and outer layers of axially-oriented electromagnetic poles to provide gradual braking about the single axis of rotation. The braking principle exploits the Coulomb friction between the two rigid contact surfaces. Compared with conventional, multi-pole, multi-layer type radial brakes in haptic applications, the proposed design provides high fidelity of free motion through an absolutely disconnected rotor. The design also provides a wide operating range by delaying the saturation limit of a magnetic circuit for a wide range of input power. In this paper, the analytical model of the brake is derived and compared with the FEM-based simulation results. The optimal design obtained from multi-objective optimization was experimentally verified for its capability in haptic applications.This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program-Artificial intelligence bio-robot medical convergence project) (20001257, Artificial intelligence algorithm based vascular intervention robot system for reducing radiation exposure and achieving 0.5 mm accuracy)—funded by the Ministry of Trade, Industry and Energy(MOTIE, Korea), the Ministry of Health and Welfare(MOHW), the Ministry of Science and ICT (MSIT) and the Korean Evaluation Institute of Industrial Technology (KEIT); the Technology Innovation Program (10052980, Development of micro-robotic system for surgical treatment of chronic total occlusion)—funded by the Ministry of Trade, Industry and Energy (MI, Korea); and the WC300 R&D Program (S2482672)—funded by the Small and Medium Business Administration (SMBA, KOREA)

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed

    Integration of the hybrid-structure haptic interface: HIPHAD v1.0

    Get PDF
    Design, manufacturing, integration and initial test results of the 6-DoF haptic interface, HIPHAD v1.0, are presented in this paper. The hybrid haptic robot mechanism is composed of a 3-DoF parallel platform manipulator, R-Cube, for translational motions and a 3-DoF serial wrist mechanism for monitoring the rotational motions of the handle. The device is capable of displaying point-type of contact since only the R-Cube mechanism is actuated. The dimensions and the orientation of the R-Cube mechanism are reconfigured to comply with the requirements of the haptic system design criteria. The system has several advantages such as relatively trivial kinematical analysis, compactness and high stiffness. The integration of the system along with its mechanism, data acquisition card (DAQ), motor drivers, motors, position sensors, and computer control interface are outlined.Marie Curie International Reintegration Grant within the 7th European Community Framework Programm

    Racing car chassis

    Get PDF
    Cílem této bakalářské práce je analýza současných konceptů podvozků závodních okruhových aut. V první části práce je zpracován historický vývoj, charakteristika kol a pneumatik s reprezentací dobře známých produktů. V druhé části je popsán systém odpružení, pružné média a tlumící členy. Systémy odpružení je zde rozdělen na nezávisle a polozávislé zavěšení kol a odpružení pevných náprav. Následující oddíl této práce je zaměřený na standardní kontrolní systémy, jako jsou ABS, ESC a TSC. Závěr přináší rychlé shrnutí této problematiky.The aim of this bachelor thesis is to analyse contemporary concepts of circuit race car chassis. In the first part of the thesis, the historical evolution is described and then wheels and tires characteristic within some well-known brand products are represented. The second important part includes the suspension systems, springing medium and damping members. The suspension systems are further divided to independent and semi-independent solutions and rigid axle suspensions. The end of this thesis deals with the standard braking control systems, such as ABS, ESC and TCS. The conclusion brings the quick summary of this subject.

    An investigation of controlled tethering in space

    Get PDF
    Astronaut tethering and retrieval operations - systems analysis and design, and motion equations for connected bodies in orbi
    corecore