4 research outputs found

    A gaussian mixture-based approach to synthesizing nonlinear feature functions for automated object detection

    Get PDF
    Feature design is an important part to identify objects of interest into a known number of categories or classes in object detection. Based on the depth-first search for higher order feature functions, the technique of automated feature synthesis is generally considered to be a process of creating more effective features from raw feature data during the run of the algorithms. This dynamic synthesis of nonlinear feature functions is a challenging problem in object detection. This thesis presents a combinatorial approach of genetic programming and the expectation maximization algorithm (GP-EM) to synthesize nonlinear feature functions automatically in order to solve the given tasks of object detection. The EM algorithm investigates the use of Gaussian mixture which is able to model the behaviour of the training samples during an optimal GP search strategy. Based on the Gaussian probability assumption, the GP-EM method is capable of performing simultaneously dynamic feature synthesis and model-based generalization. The EM part of the approach leads to the application of the maximum likelihood (ML) operation that provides protection against inter-cluster data separation and thus exhibits improved convergence. Additionally, with the GP-EM method, an innovative technique, called the histogram region of interest by thresholds (HROIBT), is introduced for diagnosing protein conformation defects (PCD) from microscopic imagery. The experimental results show that the proposed approach improves the detection accuracy and efficiency of pattern object discovery, as compared to single GP-based feature synthesis methods and also a number of other object detection systems. The GP-EM method projects the hyperspace of the raw data onto lower-dimensional spaces efficiently, resulting in faster computational classification processes

    Optimization and Mining Methods for Effective Real-Time Embedded Systems

    Get PDF
    L’Internet des objets (IoT) est le réseau d’objets interdépendants, comme les voitures autonomes, les appareils électroménagers, les téléphones intelligents et d’autres systèmes embarqués. Ces systèmes embarqués combinent le matériel, le logiciel et la connection réseau permettant le traitement de données à l’aide des puissants centres de données de l’informatique nuagique. Cependant, la croissance exponentielle des applications de l’IoT a remodelé notre croyance sur l’informatique nuagique, et des certitudes durables sur ses capacités ont dû être mises à jour. De nos jours, l’informatique nuagique centralisé et classique rencontre plusieurs défis, tels que la latence du trafic, le temps de réponse et la confidentialité des données. Alors, la tendance dans le traitement des données générées par les dispositifs embarqués interconnectés consiste à faire plus de calcul au niveau du dispositif au bord du réseau. Cette possibilité de faire du traitement local aide à réduire la latence pour les applications temps réel présentant des fortes contraintes temporelles. Aussi, ça permet d’améliorer le traitement des quantités massives de données générées par ces périphériques. Réussir cette transition nécessite la conception de systèmes embarqués de haute performance en explorant efficacement les alternatives de conception (i.e. Exploration efficace de l’espace des solutions), en optimisant la topologie de déploiement des applications temps réel sur des architectures multi-processeurs (i.e. la façon dont le logiciel utilise le matériel) , et des algorithme d’exploration permettant un fonctionnement plus intelligent de ces dispositifs. Des efforts de recherche récents ont conduit à diverses approches automatisées facilitant la conception et l’amélioration du fonctionnement des système embarqués. Cependant, ces techniques existantes présentent plusieurs défis majeurs. Ces défis sont fortement présents sur les systèmes embarqués temps réel. Quatre des principaux défis sont : (1) Le manque de techniques d’exploration de données en ligne permettant l’amélioration des performances des systèmes embarqués. (2) L’utilisation inefficace des ressources informatiques des systèmes multiprocesseurs lors du déploiement de logiciels là dessus ; (3) L’exploration pseudo-aléatoire de l’espace des solutions (4) La sélection de la configuration appropriée à partir de la listes des solutions optimales obtenue.----------ABSTRACT: The Internet of things (IoT) is the network of interrelated devices or objects, such as selfdriving cars, home appliances, smart-phones and other embedded computing systems. It combines hardware, software, and network connectivity enabling data processing using powerful cloud data centers. However, the exponential rise of IoT applications reshaped our belief on the cloud computing, and long-lasting certainties about its capabilities had to be updated. The classical centralized cloud computing is encountering several challenges, such as traffic latency, response time, and data privacy. Thus, the trend in the processing of the generated data of IoT inter-connected embedded devices has shifted towards doing more computation closer to the device in the edge of the network. This possibility to do on-device processing helps to reduce latency for critical real-time applications and better processing of the massive amounts of data being generated by the these devices. Succeeding this transition towards the edge computing requires the design of high-performance embedded systems by efficiently exploring design alternatives (i.e. efficient Design Space Exploration), optimizing the deployment topology of multi-processor based real-time embedded systems (i.e. the way the software utilizes the hardware), and light mining techniques enabling smarter functioning of these devices. Recent research efforts on embedded systems have led to various automated approaches facilitating the design and the improvement of their functioning. However, existing methods and techniques present several major challenges. These challenges are more relevant when it comes to real-time embedded systems. Four of the main challenges are : (1) The lack of online data mining techniques that can enhance embedded computing systems functioning on the fly ; (2) The inefficient usage of computing resources of multi-processor systems when deploying software on ; (3) The pseudo-random exploration of the design space ; (4) The selection of the suitable implementation after performing the otimization process

    Explorations in Parallel Linear Genetic Programming

    No full text
    Linear Genetic Programming (LGP) is a powerful problem-solving technique, but one with several significant weaknesses. LGP programs consist of a linear sequence of instructions, where each instruction may reuse previously computed results. This structure makes LGP programs compact and powerful, however it also introduces the problem of instruction dependencies. The notion of instruction dependencies expresses the concept that certain instructions rely on other instructions. Instruction dependencies are often disrupted during crossover or mutation when one or more instructions undergo modification. This disruption can cause disproportionately large changes in program output resulting in non-viable offspring and poor algorithm performance. Motivated by biological inspiration and the issue of code disruption, we develop a new form of LGP called Parallel LGP (PLGP). PLGP programs consist of n lists of instructions. These lists are executed in parallel, and the resulting vectors are summed to produce the overall program output. PLGP limits the disruptive effects of crossover and mutation, which allows PLGP to significantly outperform regular LGP. We examine the PLGP architecture and determine that large PLGP programs can be slow to converge. To improve the convergence time of large PLGP programs we develop a new form of PLGP called Cooperative Coevolution PLGP (CC PLGP). CC PLGP adapts the concept of cooperative coevolution to the PLGP architecture. CC PLGP optimizes all program components in parallel, allowing CC PLGP to converge significantly faster than conventional PLGP. We examine the CC PLGP architecture and determine that performanc

    A New Crossover Operator in Genetic Programming for Object Classification

    No full text
    corecore