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ABSTRACT

The Internet of things (IoT) is the network of interrelated devices or objects, such as self-
driving cars, home appliances, smart-phones and other embedded computing systems. It
combines hardware, software, and network connectivity enabling data processing using po-
werful cloud data centers. However, the exponential rise of IoT applications reshaped our
belief on the cloud computing, and long-lasting certainties about its capabilities had to be
updated. The classical centralized cloud computing is encountering several challenges, such
as traffic latency, response time, and data privacy. Thus, the trend in the processing of the
generated data of IoT inter-connected embedded devices has shifted towards doing more
computation closer to the device in the edge of the network. This possibility to do on-device
processing helps to reduce latency for critical real-time applications and better processing of
the massive amounts of data being generated by these devices.

Succeeding this transition towards the edge computing requires the design of high-performance
embedded systems by efficiently exploring design alternatives (i.e. efficient Design Space Ex-
ploration), optimizing the deployment topology of multi-processor based real-time embedded
systems (i.e. the way the software utilizes the hardware), and light mining techniques enabling
smarter functioning of these devices.

Recent research efforts on embedded systems have led to various automated approaches
facilitating the design and the improvement of their functioning. However, existing methods
and techniques present several major challenges. These challenges are more relevant when
it comes to real-time embedded systems. Four of the main challenges are : (1) The lack of
online data mining techniques that can enhance embedded computing systems functioning
on the fly ; (2) The inefficient usage of computing resources of multi-processor systems when
deploying software on ; (3) The pseudo-random exploration of the design space ; (4) The
selection of the suitable implementation after performing the otimization process ;

In this context, the overall objective of our research is to propose a set of new models, methods
and algorithms helping designers to efficiently design and use real-time embedded systems.
The main contributions of this thesis include but not limited to :

1. The proposition of a new online clustering algorithm to classify streaming data on the
fly. The proposed algorithm enables smarter functioning of these real-time embedded
devices.

2. The definition and implementation of a fully automated multi-objective exploration
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process to map critical real-time application to heterogeneous multi-processor systems.

3. The introduction of an improved evolutionary algorithm incorporating problem struc-
ture during the exploration process.

4. The definition of a new approach to assist designers during the selection of the proper
system implementation.
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RÉSUMÉ

L’Internet des objets (IoT) est le réseau d’objets interdépendants, comme les voitures au-
tonomes, les appareils électroménagers, les téléphones intelligents et d’autres systèmes em-
barqués. Ces systèmes embarqués combinent le matériel, le logiciel et la connection réseau
permettant le traitement de données à l’aide des puissants centres de données de l’informa-
tique nuagique. Cependant, la croissance exponentielle des applications de l’IoT a remodelé
notre croyance sur l’informatique nuagique, et des certitudes durables sur ses capacités ont
dû être mises à jour. De nos jours, l’informatique nuagique centralisé et classique rencontre
plusieurs défis, tels que la latence du trafic, le temps de réponse et la confidentialité des
données. Alors, la tendance dans le traitement des données générées par les dispositifs em-
barqués interconnectés consiste à faire plus de calcul au niveau du dispositif au bord du
réseau. Cette possibilité de faire du traitement local aide à réduire la latence pour les appli-
cations temps réel présentant des fortes contraintes temporelles. Aussi, ça permet d’améliorer
le traitement des quantités massives de données générées par ces périphériques. Réussir cette
transition nécessite la conception de systèmes embarqués de haute performance en explorant
efficacement les alternatives de conception ( Exploration efficace de l’espace des solutions),
en optimisant la topologie de déploiement des applications temps réel sur des architectures
multi-processeurs (la façon dont le logiciel utilise le matériel) , et des algorithme d’exploration
permettant un fonctionnement plus intelligent de ces dispositifs.

Des efforts de recherche récents ont conduit à diverses approches automatisées facilitant
la conception et l’amélioration du fonctionnement des système embarqués. Cependant, ces
techniques existantes présentent plusieurs défis majeurs. Ces défis sont fortement présents
sur les systèmes embarqués temps réel. Quatre des principaux défis sont : (1) Le manque
de techniques d’exploration de données en ligne permettant l’amélioration des performances
des systèmes embarqués. (2) L’utilisation inefficace des ressources informatiques des systèmes
multiprocesseurs lors du déploiement de logiciels là dessus ; (3) L’exploration pseudo-aléatoire
de l’espace des solutions (4) La sélection de la configuration appropriée à partir de la listes
des solutions optimales obtenue.

Dans ce contexte, l’objectif global de cette thèse est de proposer de nouveaux modèles,
méthodes et algorithmes aidant les concepteurs à concevoir efficacement des applications
temps réel complexes et déployées sur des architectures multi-processeurs modernes. Les
principales contributions de cette thèse comprennent, mais sans s’y limiter à :

1. La proposition d’un algorithme de clustering en ligne qui permet de classer un flux de
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données à la volée. L’algorithme proposé permet un fonctionnement plus intelligent
de ces dispositifs.

2. La définition d’un processus d’exploration multi-objectif automatisé pour mapper des
applications temps réel à un système multiprocesseurs hétérogène.

3. L’introduction d’un algorithme évolutif amélioré incorporant la structure du problème
d’ordonnancement au cours du processus d’exploration.

4. La définition d’une nouvelle approche pour aider les concepteurs lors de la sélection
de la bonne solution à la fin du processus d’exploration.
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CHAPTER 1 INTRODUCTION

1.1 Research Context : Internet of Things and Edge Computing

In recent years, the Internet of Things (IoT), attracted the attention of researchers from
academia and industry throughout the world. Introducing IoT-based products and services
has been a growing trend thanks to rapid advances of numerous technologies, including
ubiquitous sensors, self-driving cars, bio-medical systems, and the list goes on. According to
Gartner, Inc. (Fenn and Raskino, 2011), more than 20 billion connected objects will be in
use worldwide by 2020. This huge expansion in terms of connected devices will raise the scale
of produced, as well as consumed, data to an unprecedented level. Cisco reported that IoT
networks will generate more than 400 zettabytes (trillion gigabytes) of data a year in 2018
(Index, 2015). The huge size of generated data elucidate the key role of cloud computing in
IoT success.

Cloud computing allows devices to perform complex computing tasks using data managed
remotely on data centers. Cloud computing has virtually unlimited capabilities in terms of
data processing, storage and control. By taking advantage of cloud computing capacities,
IoT manufacturers did not foresee any trouble. However, due to the exponential growth
of IoT networks, in the next few years, cloud will face increasing difficulties to meet the
streaming data processing requirements and did not live up to the expectations of the IoT
community (Aazam et al., 2014). Thus, these limitations reverse the trend towards doing
more computation and analysis on the devices themselves instead of sending all the generated
data to the cloud for processing. This on-device computation enables lower response times,
as well as reduced traffic and directly benefiting IoT scaling. The ability to do advanced on-
device processing (i.e. near the source of the data) is referred to as edge computing (Bonomi
et al., 2012). Edge computing pushes applications, data and computing power away from
centralized data centers to the edge of the network, closer to the source of data (Shi et al.,
2016) as depicted in Figure 1.1.

Edge computing will have a huge impact on IoT Quality of Service (QoS), fueling strong
ecosystem growth as end devices become more powerful and capable of running sophisticated
applications such as object detection, face recognition, language processing, and obstacle
avoidance (Shi et al., 2016). For that it is crucial that each device must be able to handle the
data and activate appropriate responses quickly and safely, while consuming little power on
platforms with minimal footprints. Therefore, the key success factor of IoT network enabling
edge computing is the design of powerful devices and light mining of the generated data.
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Figure 1.1 Edge computing allows data from internet of things devices to be analyzed on-
device at the edge of the network and avoids the cloud as a possible bottleneck (local pro-
cessing reducing the backhaul traffic to the central repository). (Manhart, 2017).

Advances in the design of embedded systems have given rise to many commercial devices
that are powerful enough to run on-device complex real-time applications. These advances
in integrated circuits and embedded systems pursue new opportunities but also several chal-
lenges. To succeed in this dramatic shift to the edge computing paradigm, IoT manufacturers
need help from research community to tackle these issues.

1.2 Research Motivation

Most of the devices belonging to IoT network might require short response time, private data,
produce big quantities of data, and have specific concerns with the privacy of transferred data.
Thus, there is a strong belief among IoT manufacturers that the transition to edge compu-
ting is no longer an option but a necessity. The success of the edge computing compulsory
transition is tightly coupled with the design of high-performance embedded devices.

An embedded system is a dedicated computing system combining software and hardware.
A particular class of embedded systems are real-time embedded systems (hereafter named
RTES). The output correctness of a given RTES depends, not only, on the functional result,
but also on the time at which this result has been produced. These complex computing
systems require sophisticated hardware, software, and design methodologies. One of the main
focuses of this dissertation goes to the optimization of the hardware design and the way the
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software is deployed on while considering its timing requirements. When considering the
limitations associated with the design of RTES based on a single processor where increasing
clock frequency is prohibitive after reaching the wall of 4 Ghz, companies and researchers
were trying to find an alternative. Multi-processor was, therefore, the natural evolutionary
step to keep up with the ever-increasing performance. In this context and given the key
role of RTES, the problem is twofold ; suggest a bench of tools helping designers during the
exploration of design alternatives, prototyping and build time-efficient data mining techniques
allowing smarter functioning of these devices.

Given the complex specification of RTES based on multi-processor architectures and the ple-
thora of design choices, design decisions need to be based on a systematic exploration process
by tuning the design parameters. This process is performed in order to maximize system per-
formances (e.g. slack time, response time) while minimizing non functional costs (e.g. power
consumption, energy dissipated). We call this process Design Space Exploration (hereafter
named DSE). Intuitively, identifying the optimal solution(s) in such space requires a brute-
force approach that evaluates each platform configuration separately. This is impracticable.
Owing to the complexity of the exploration process and performance evaluation cost, resear-
chers have proposed automated DSE where exploration methods are able to take decisions
and come up with the optimal solution using abstracted models able to cater to larger and
complex systems. Even if automating the DSE represents an effective technique to reduce
prototyping cost and time-to-market, novel exploration techniques need to be explored when
larger design spaces are faced.

In addition to the efficient design of RTES devices, it is essential to consider how efficiently
to manage and analyze the generated data to transform the information into knowledge for
smarter decisions in the future. The mining task requires advanced and computationally ef-
fective cognitive computing techniques. Fortunately, data mining techniques avail of these
voluminous data to improve their learning capabilities to discover hidden patterns. This real-
time knowledge extraction process makes the mining task more challenging. In this context,
several data stream clustering algorithms have been proposed to perform unsupervised lear-
ning. Data stream clustering is a useful and ubiquitous tool in data analysis that assigns on
the fly incoming data into groups whose members present higher degree of similarity than
others.

1.3 Problem Statement

In the context of this dissertation, our aim is to investigate, define, and implement a set of
robust optimization and mining techniques to sustain the design and functioning of real-time
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embedded systems.

In doing so, our research intends to provide solutions able to mitigate multiple challenges,
including, but not limited to :

— The need of incremental mining approaches that help embedded systems designers to
detect functioning anomalies and improve device autonomy.

— The lack of efficient and fully online clustering algorithms able to incrementally construct
groups of design implementations under tight timing and memory constraints.

— The inefficient usage of computing resources when deploying software on.
— The design space defined as the set of possible partitioning and schedules is likely

to be very large and checking whether each candidate satisfies the software’s timing
constraints in addition to evaluating its fitness is unrealistic.

— Conventional search heuristics were initially defined as a general exploration algorithm
based on blind and pseudo-random operators. It is commonly admitted that the use
of these operators is quite poor for an efficient exploration of vast design spaces.

— At the end of the optimization process, designers (decision makers) always face Pareto
Fronts including a large number of sub-optimal solutions from which selecting the most
proper system implementation is potentially tough.

— Designer’s preference, if taken into account, can help to push the search engine to
focus on specific regions of the design space.

Tackling these challenges has the potential to substantially advance of the frontier of know-
ledge in the fields of embedded systems design benefiting IoT network performances.

1.4 Research Objectives

To alleviate the challenges described in the previous section, the global objective of this thesis
is to propose new techniques and methods helping designers to efficiently design complex ap-
plications on modern parallel architectures and ameliorate their behavior once in the market
by exploiting the streaming data generated by IoT devices.

The main objectives of the thesis are :

— Conceive a novel fully online data stream clustering algorithm allowing better usage
of embedded real-time devices.

— Accelerating the design stage and improving the exploration of the solutions space.
— The evaluation of the efficiency of several heuristics to choose the most appropriate

one depending on the problem structure and the trade-off between conflicting metrics.
— Define an improved evolutionary algorithm for code mapping optimization that will
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guide the search for the optimal parameter set for optimized code deployment.
— Introduce an automated approach to systematically help designers (decision makers)

to efficiently choose their preferred solutions after the optimization process from the
obtained Pareto Fronts.

1.5 Thesis

The main contribution of this dissertation is in : (1) online data stream clustering algorithm
allowing smarter functioning and design of IoT devices ; helping designers to select the sui-
table implementation resulting from the optimization process and ; (3) developing automated
and intelligently guided design space exploration engine based on evolutionary algorithms.

1.6 Thesis Contributions

This dissertation contributes to the area of real-time embedded systems design and functio-
ning from various perspectives. Specifically, it introduces novel approaches and techniques
to help designers during the design process by automation, optimization, improvement and
data mining for smarter functioning.

As depicted in Figure 1.2, the main contributions of this thesis are :

1. The definition and implementation of a new fully online data stream clustering algo-
rithm.

2. The implementation of a fully automated design space exploration process based on
multi-objective evolutionary algorithm to dispatch the execution of real-time applica-
tions on heterogeneous multi-processor systems.

3. The proposition of a hypervolume-based approach to help designers choose the pre-
ferred implementation from the obtained Pareto front.

4. The definition of a schedulability guided exploration engine based on an improved
evolutionary algorithm.

These contributions are briefly described in the next section dedicated to the list of publica-
tions.

1.7 List of Publications

The core chapters of this dissertation are based on a set of published and submitted papers
listed and briefly described in this section. The publications are divided into two parts :
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Figure 1.2 Overview of the main contributions in this dissertation.

(1) Six journal papers containing the main contributions. Four of these paper represents the
basics of this dissertations. Four secondary papers presented in international conferences are
given later.

1.7.1 Journal Papers

— Ayari, R., Hafnaoui, I., G. Beltrame and G. Nicolescu (2017).DeDaSC : Delaunay
Triangulation-based Data Stream Clustering Algorithm for the Internet of Things
IEEE Transactions on Emerging Topics in Computing).

In this paper (Ayari et al., 2017a), we introduce a new Delaunay triangulation-based Data
Stream Clustering algorithm (DeDaSC) able to construct arbitrary shaped clusters on the
fly without any prior knowledge of the number of clusters and their shapes. DeDaSC requires
only the newly arrived data, not the entire dataset, to be saved in memory. An incremental
Delaunay triangulation is introduced to guarantee the effectiveness of the neighborhood dis-
covery with limited computation time and memory space. DeDaSC has been developed with
the aim of smarter and autonomuos working of IoT devices based on the generated data. 2

— Ayari, R., Hafnaoui, I., G. Beltrame and G. Nicolescu (2017). ImGA : An Improved
Genetic Algorithm for Partitioned Scheduling on Heterogeneous Multi-core Systems.
Journal of Design Automation for Embedded Systems (DAEM).

The endeavor of this paper (Ayari et al., 2017b) is to propose an Improved Genetic Algorithm,
named ImGA, to guide the exploration process and extensively ameliorate the conventional
GA findings. To do this, we are proposing a climbing hill repairing strategy for the popu-
lation initialization. This strategy aims on adjusting the randomly generated solutions by
incorporating a local search algorithm. Later, we integrated the schedulability-guided cros-
sover operator proposed in (Ayari et al., 2016a) to be part of our improved algorithm. Then,
maintaining a vast population diversity is crucial to ensure that the design space was appro-
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priately explored and avoid premature convergence by stagnating on sub-optimal solutions.
To face this problem, we propose two main contributions ; (i) a circular mutation operator
switching the workload of the heaviest and lightest processors (ii) and a restart technique ba-
sed on injecting randomly generated solutions at advanced stages of the optimization engine
giving a new impetus to the remaining generations.

— Ayari, R., Nikdast, M., Hafnaoui, I., G. Beltrame and G. Nicolescu (2017). HypAp : a
Hypervolume-Based Approach for Refining the Design of Embedded Systems. IEEE
Embedded Systems Letters (ESL).

This paper presents HypAp (Ayari et al., 2017c), a hypervolume-based automated approach
to systematically help embedded systems designers choose their preferred solutions after the
optimization process. HypAp first clusters the Pareto Front solutions, and then seeks a Redu-
ced Pareto Front that maximizes the hypervolume. Furthermore, several quality indicators,
including hypervolume, non-uniformity, concentration, and outer diameter, are defined to
assess the effectiveness of HypAp when it is applied to various types of Pareto Fronts ob-
tained from different multi-objective optimization problems. We further apply HypAp to a
case study of an NoC mapping problem with three competing objectives, and, employing
the defined quality indicators. The result of this work is critical for the design of complex
embedded systems, in which designers require to choose from Pareto Fronts including a large
number of near-optimal solutions.

— Ayari, R., I. Hafnaoui, A. Aguiar, P. Gilbert, M. Galibois, JP. Rousseau, G. Bel-
trame, G. Nicolescu (2016). Multi-objective mapping of full-mission simulators on he-
terogeneous distributed multi-processor. Journal of Defense Modeling and Simulation
(JDMS).

In this paper (Ayari et al., 2016b), a methodology based on a multi-objective evolutionary
algorithm, NSGA-II, was developed to search the design space for a set of optimized mapping
configurations that trade-off three performance metrics ; makespan, communication cost and
memory balancing. The target architecture considered is a heterogeneous distribute multi-
processor platform. This work demonstrated that the methodology is able to find a set of
optimized solutions that will help in the system integration.

— I. Hafnaoui, Ayari, R., G. Nicolescu and G. Beltrame (2017). Execution Order Assi-
gnment Through Data Criticality in Hard Real-Time Dataflow Graph-based Systems.
Journal of Design Automation for Embedded Systems (DAEM).

In this paper (Hafnaoui et al., 2017a), we propose an approach that will facilitate the pro-
cess of assigning execution order to different components without inherent knowledge of the
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function and behaviour of components. Thus, there is a need to transform the DFG into a
DAG. To that endeavour, we propose a method based on the idea of propagation of error to
eliminate the cycles by taking the dependencies between the components and their in uence
on the system into consideration. We introduce the concept of criticality of data that will aid
in deciding which edges to discard to transform the graph into a DAG.

— I. Hafnaoui, Ayari, R., G. Nicolescu and G. Beltrame (2018). Time is of the Essence :
Spreading Information among Interacting Groups. Proceedings of the National Aca-
demy of Sciences (PNAS).

Animal behavior is greatly influenced by interaction between peers as well as with the en-
vironment. Understanding the flow of information between individuals can help deciphering
their behavior. This applies to both the microscopic and macroscopic levels, from cellular
communication to coordinated actions by humans. The aim of this work is to provide a
simple but sufficient model of information propagation to learn from natural coordinated
behavior, and apply this knowledge to engineered systems. We develop a probabilistic model
to infer the information propagation in a network of communicating agents with different
degrees of interaction affinity. We focus especially on the concept of consensus, and estimate
the time needed to reach an agreement between all agents. We experiment using swarms of
robots to emulate the communication of biological and social media groups.

1.7.2 Conference Papers

— Ayari, R., Hafnaoui, I., G. Beltrame and G. Nicolescu (2016). Simulation-based Sche-
dulability Assessment for Real-Time Systems. Summer Computer Simulation Confe-
rence (SCSC).

The aim of this paper (Ayari et al., 2016c) is to reduce the pessimism introduced by the
use of schedulability tests in the context of a real-time task allocation problem. We intro-
duce a simulation-based approach that reduces the pessimism to achieve better findings. Our
experimental results show that the proposed simulation-based approach can identify a consi-
derable amount of valid task sets that would otherwise have to be treated as unschedulable
by existing methods.

— Ayari, R., Hafnaoui, I., G. Beltrame and G. Nicolescu (2016). Schedulability-Guided
Exploration of Multi-core Systems. Rapid Systems Prototyping (RSP), published.

In this paper (Ayari et al., 2016a), we propose a guided search strategy based on a novel
crossover operator for partitioned scheduling which incorporates certain knowledge of the
rate monotonic schedulability test. The work can be applied to any other schedulability test
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and even for dynamic algorithms such as the earliest deadline first algorithm. With the help
of the guided search strategy, is capable of finding near-optimal solutions for the mapping
problem on heterogeneous multi-core systems. hence, it can act as a powerful tool for the
solution space exploration in the context of partitioned scheduling.

— I. Hafnaoui, C. Chao, Ayari, R., G. Nicolescu and G. Beltrame (2017). An Analysis of
Random Cache Effects on Real-Time Multicore Scheduling Algorithms. Rapid Systems
Prototyping (RSP).

In this paper (Hafnaoui et al., 2017b), we offer a framework that incorporates contention
consciousness in the timing analysis as well as scheduling algorithm design and hence a tool
to optimize the hardware/software structures. To do this, we introduce a compact random
cache model for multilevel caches on real-time multicore systems to estimate interleaving
reuse distance in shared caches. Then we calculate the cache hit probability and the Cycle
Per Instruction (CPI) of tasks sharing a cache which makes our model able random cache
model into the scheduling simulator. This integration helps to evaluate scheduling algorithms
in the presence of shared random caches.

— I. Hafnaoui, Ayari, R., G. Nicolescu and G. Beltrame (2016). Regression-based Mo-
del Generator for Software Performance Estimation. Summer Computer Simulation
Conference (SCSC).

With complex real-time systems development, a gap is created between system developers
and integration experts due to a limited knowledge in software engineering. The lack of
data needed to integrate the system properly, ensure the timing requirements and optimize
performances was motivation to propose the work presented in this paper (Hafnaoui et al.,
2016). A model generator based on regression analysis is introduced to estimate the speed-
up expected when migrating from a reference architecture, such as a component developer’s
machine, to a final target architecture to which the integrated system is deployed.

1.8 Thesis Outline

This thesis is divided into 10 chapters. Chapter 2 critically reviews the important background
material and related works that are used in this thesis. In chapter 3, we formally model the
scheduling problem tackled in the different stages of this thesis. In Chapter 4, we present and
synthesize the set of articles presented in Chapters 4, 5, 6 and 7 in terms of both methodology
and results.

In addition to these two chapters, other parts of this thesis are presented as four journal
publications (research papers) which are included in Chapters 5, 6, 7 and 8. The chapters
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are organized as follows.

In Chapter 5, we introduce a new Delaunay triangulation-based Data Stream Clustering
algorithm, called DeDaSC, able to construct arbitrary shaped clusters on the fly. DeDaSC
requires only the newly arrived data, not the entire dataset, to be saved in memory.

Chapter 6 presents a multi-objective optimization approach based on the model-driven design
paradigm allowing us to map a set of inter-communicating real-time tasks making up the Full-
Mission Simulator model onto a heterogeneous distributed multi-processor system model.

Chapter 7 introduces a new posteriori technique, called HypAp, to help system designers to
effectively choose their preferred solutions, from a refined representation of the Pareto Front
optimal solutions.

Chapter 8 illustrates a guided DSE approach. A guided exploration prioritizes fitter solutions
to be part of next generations and avoids exploring unpromising configurations by transmit-
ting a set of predefined criteria from parents to children.

Finally, chapter 9 discusses the techniques proposed in previous chapters, the conclusions,
and possible avenues for future work.



11

CHAPTER 2 LITTERATURE REVUE

It is now more than a quarter of a century since researchers started publishing papers on
DSE and how to efficiently dispatch real-time computation across the execution resources of
parallel architectures. This section includes a broad overview of the basic concepts applied
in this thesis and a survey of most relevant related literature. This chapter will be devised
in three main sections. First, we start by introducing embedded real-time systems from soft-
ware and hardware perspectives. The focus in this part goes to the definitions and theoretical
background of real-time systems and multi-processor architectures. This section is therefore
of crucial importance and will provide the basis for better understanding of the following
parts and get familiarized with. Then, after a brief introduction of multi-objective optimi-
zation techniques, we summarize the results of work related to the scheduling of real-time
applications with different criticalities on mono-/multi-processor execution platforms. Since
partitioned scheduling strategy is adopted in this dissertation, a special focus has been laid
on mapping strategies. Lastly, since we strongly believe that succeeding the clustering of
the generated implementations on the fly, sorely helps to guide the design space exploration
towards specific (i.e. based on designer preferences) regions of the solution space. Also, on-
line mining of the generated data enhances these systems functioning. We discuss the main
classes of online (i.e. data-stream) clustering techniques.

2.1 Embedded Real-time Systems

2.1.1 Real-time Systems

Systems are referred to as real-time when their correct behavior depends not only on the
proper functioning of the operations they perform, but also on the time at which they are
performed by respecting the system’s deadline (Davis and Burns, 2011a). A response that
occurs too late to meet its deadline will be useless or even result in catastrophic conse-
quences. Unlike other traditional systems that have a separation between timing correctness
and performance, real-time systems try to make a compromise between the two where ti-
ming correctness and performance are tightly coupled. Today, real-time computing plays a
primordial role in our society as an increasing number of complex systems rely, partially or
completely, on computer control.
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2.1.1.1 Timing Constraints

Real-time systems can be categorized as either hard or soft depending on the criticality of
timing constraints and the consequence of missing a deadline (Davis and Burns, 2011a). We
can describe hardness using a value function of time to indicate solution validity evolution.

— We consider a real-time system as hard when it is compulsory that an system’s response
must be performed within a strict deadline i.e. missing a deadline is considered as a
total system failure.
Figure 2.1 shows the task value function of a hard real-time system.

Figure 2.1 Hard real-time task value function. Once a deadline is missed, the real-time system
switches immediately to an invalid state. This event may have catastrophic consequences.

— A real-time system is considered as soft when missing deadlines cause only some
performance degradation. Figure 2.2 shows the task value function of a soft real-time
system.

Figure 2.2 Soft real-time task value function. After missing a deadline, the real-time system
still in an acceptable state during a given time laps.
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2.1.1.2 Priority and Preemption

Task’s priority defines the execution order of tasks in priority-based scheduling policies. We
distinguish two priority assignment approaches ;

— Static priority-driven scheduler where priorities are assigned statically to each task
and do not change over time.

— A dynamic priority-driven scheduler can assign, and possibly also redefine, process
priorities at run-time.

Preemption is a very helpful mechanism to support priority-based scheduling. Regardless of
the tasks’ behavior, it is important to state that ;

— Some of them, once elected for execution, may be interrupted to allocate the processor
to another one. Due to such behavior, they are called preemptive.

— On the other hand, when an elected task should not be interrupted before the end of
their execution, it is called non-preemptive.

It is worth to mention that schedulers involving preemption can achieve better performance
than non-preemptive scheduling algorithms (e.g. preemptive Earliest Deadline First (EDF)
can reach a utilization rate equal to 1 while non-preemptive EDF cannot (Stankovic et al.,
2012)).

2.1.1.3 System Periodicity

Arrival patterns of real-time tasks determine whether those tasks will be treated as periodic,
aperiodic or sporadic.

— A periodic task has ready times for its jobs separated by a constant rate. The amount
of time between each iteration of two consecutive activations is called period.

— Aperiodic tasks respond to randomly arriving events. Aperiodic tasks characterized
by a minimum inter-arrival time are called sporadic.

— Sporadic tasks are real-time tasks which are activated irregularly with some known
bounded rate. The bounded rate is characterized by a minimum inter-arrival period.

2.1.1.4 Schedulability Analysis

The schedulability analysis of a real-time system verifies its temporal correctness under a
specific scheduling policy. They are concerned with deciding whether it is possible to allocate
to each task a processor time equal to its execution requirement. In a real-time system, a
process or task has schedulability ; tasks are accepted by a real-time system and completed
as specified by the task deadline depending on the characteristic of the scheduling policy on
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a given hardware architecture.

Definition 2.1.1 A taskset τ is considered schedulable if all tasks meet their deadlines.

A set of schedulability tests have been developed and widely used in literature to verify sche-
dule validity. These schedulability tests are classified in three categories ; sufficient, necessary
and exact.

Definition 2.1.2 Sufficient test : If test is passed, then tasks are definitely schedulable. If
test is failed, tasks may be schedulable, but not necessarily

Definition 2.1.3 Necessary Test : If test is passed, tasks may be schedulable, but not neces-
sarily. If test is failed, tasks are definitely not schedulable

Definition 2.1.4 Exact Test (Necessary + Sufficient) : The task set is schedulable if and
only if it passes the test.

2.1.2 Embedded Multi-processor Systems

The trend in the design of modern hardware platforms has shifted towards increasing the
number of processing elements. The rise of multi-processor architectures reshaped computer
engineering, and long-lasting certainties had to be updated. Moore’s law (Davis and Burns,
2011a) shifted its focus from the number of transistors to the number of processors that
could be integrated on a chip and Amdahl’s law (Hill et al., 2008) was no longer sufficient
to describe speed-ups gained by parallelization. Multi-processor systems are being accepted
in a wide spectrum of disciplines. As a result, the design trend from single-processor real-
time systems to multi-processor real-time systems is inevitable. Multi-processor design offers
a number of advantages over the traditional single-processor design. One of them is that
multi-processor can exploit parallelism, which is one of the most effective ways to address
the power issue, while maintaining high performance with lower voltage and frequency.

Among multi-processor architectures, we distinguish three main classes :

— Homogeneous : All the processors of the parallel execution platform have identical
characteristics and are therefore perfectly interchangeable.

— Uniform : Each processor is characterized by its computing capacity or relative speed :
when a job is running on a computing capacity s processor during t time units, it
performs s× t work units.
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— Heterogeneous : Heterogeneous computing refers to systems that use more than one
kind of processing elements. These systems gain performance or energy efficiency not
just by adding the same type of processors, but by adding dissimilar coprocessors,
usually incorporating specialized processing capabilities to handle particular tasks.
This type of architecture was developed to meet the high computation and timing
requirements of real-time systems and have been widely used in industry, covering
different domains such as aerospace, automotive and avionics. One recent new op-
portunity in this multi-processor era is provided by heterogeneous systems : in (Hill
et al., 2008), Hill and Marty claimed that "asymmetric multiprocessor chips can offer
potential speedups that are much greater than symmetric multiprocessor chips (and
never worse)". In (Van Craeynest et al., 2012a) authors stated that a heterogeneous
architecture composed by a single big processor and few smaller processors "can enable
higher performance and reduced energy consumption".

With the shift from single processor to multi-processor design come along new challenges.
One such challenge is directly dependent on how to efficiently utilize the hardware resource
on multi-processor platforms. Therefore, software plays a more important role in the multi-
processor era. The improvement in performance gained by the use of a multi-processor sys-
tems depends widely on the way software algorithms will exploit it and efficiently distribute
and schedule the workloads between its processing elements.

2.1.3 Multi-objective optimization

Problems with more than one objective have the distinction of being much more difficult to
treat than their mono-objective equivalent. The difficulty lies in the absence of a ranking
criteria to compare solutions. A solution may be better than another on some objectives and
worse on others (Yuanlong Chen and Ma, 2012). The solutions found by a multi-objective
optimization approach have to be optimal with respect to distinct objectives, typically conflic-
ting. It is not possible to find an optimal solution that satisfies all objectives but rather a
pool of efficient solutions characterized by the fact that their cost cannot be improved in
one dimension without being worsened in another as depicted in Figure 2.3. That is why
the concept of optimal solution becomes less relevant in multi-objective optimization. These
solutions form the Pareto optimal front referring to the economist Vilfredo Pareto (Ehrgott,
2012).

Mathematically, the multi-objective optimization problem is defined as follows :

Ω = Decision Space ; Ψ = Solution Space
X = (x1, x2, ..., xn) ∈ Ω ; X is a vector of n decision variables



16

Figure 2.3 Example of a Pareto frontier. The triangle points represent feasible choices, and
smaller values are always preferred to bigger ones. Triangle points are not on the Pareto front
because they are dominated by pentagon points. Points A and B are not strictly dominated
by any other, and hence do lie on the Pareto front.

F = (f1, f2, ..., fm) ; m is number of objective functions

Y = F (X) = (f1(X), f2(X), ..., fm(X)) = (y1, y2, ..., ym) ∈ Ψ (2.1)

In the literature, many approaches have been developed to address this problem and could
be classified into two main categories :

Scalar or weight-based approach. Weight-Based approach consists of formulating a single-
objective optimization problem such that its optimal solutions are optimal solutions to the
multi-objective optimization problem. This technique is one of the oldest techniques in multi-
objective optimization using heuristics such as Genetic Algorithms (GAs) (Syswerda and
Palmucci, 1991), (Jakob et al., 1992), (Yang and Gen, 1994) and Simulated Annealing (Se-
rafini, 1992). Since setting a weight vector leads to a single point, to find different solutions
with various trade-offs, the optimization process is performed with different weight vectors
which produce an extensive computational cost and the decision maker have to set the most
suitable weight combinations to reproduce a representative part of these Pareto solutions.
Furthermore, a main technical shortcoming of this approach is that the non-convex points of
the pareto front are unreachable.

Pareto approach. The Pareto approach directly uses the concepts of dominance in the solu-
tions generation. Therefore, the Pareto optimum gives more than a single solution, but rather
a set of solutions called non-dominant solutions. The main advantage of these approaches
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is the simultaneous optimization of conflicting objectives. NSGA (Srinivas and Deb, 1994),
NSGA-II (Deb et al, 2002), SPEA (Zitzler and Thiele, 1999) and SPEA-II (Guliashki et al.,
2009) are among the most known multi-objective algorithms based on this technique.

2.1.4 Real-time Scheduling

In real-time environments, scheduling algorithms ask for an order according to which the tasks
are executed such that various constraints (deadlines) are satisfied (met). Efficient scheduling
policies look for higher utilization of available resources to achieve a target quality of service
(Sha et al., 2004). Depending on the number of processing units of the execution platform,
we distinguish two classes of scheduling policies.

2.1.4.1 Uni-processor Scheduling

Many researchers have been extensively conducted on single processor real-time scheduling
algorithms. Two classic real-time scheduling policies which are considered as fundamentals
for uni-processor scheduling and and also play a key role in implementing multi-processor
scheduling algorithms.

— Rate Monotonic (RM) (Lehoczky et al., 1989), (Klein et al., 2012) is among the most
effective uni-processor real-time scheduling algorithms. It belongs to the class of fixed-
priority preemptive scheduling algorithms on uni-processor. The static priorities are
assigned according to the cycle duration of the job, so a shorter cycle duration results
in a higher job priority. RM is one of the most widely studied and used in practice
(Halang and Stoyenko, 1994), (Mattai and Joseph, 1995), (Krishna, 1999), (Stankovic
and Ramamritham, 1988). It is demonstrated by Liu and Layland (Liu and Layland,
1973) that RMS is the optimal scheduling policy among all fixed-priority scheduling
algorithms, i.e., if a task set is schedulable, then RMS can successfully schedule that
task set. They also formally proved that a feasible schedule by RM can be found if
the processor utilization is less or equal to 0.7.

— Earliest Deadline First (EDF) algorithm is an optimal dynamic priority driven algo-
rithm in which higher priority is assigned to the task’s job that has earlier deadline,
and a higher priority task always preempts a lower priority one(Halang and Stoyenko,
1994), (Mattai and Joseph, 1995), (Krishna, 1999), (Stankovic and Ramamritham,
1988). Due to those characteristics, the processor can achieve a utilization bound up
to 1.
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2.1.4.2 Multi-processors Scheduling

The development of appropriate scheduling algorithms for multi-processor platforms is not
trivial and an algorithm which is optimal for uni-processor is not optimal anymore for multi-
processor system (Baker, 2005). Efficient scheduling of real-time applications onto multi-
processor systems is an NP-hard problem and solving it requires the use of meta-heuristics to
find sub-optimal solutions instead of the optimal ones. Multiprocessor scheduling techniques
fall into two main categories :

— Global scheduling
Global scheduling algorithms store the tasks that have arrived, but not finished their
execution, in one queue which is shared among all processors as depicted in Figure
2.4. Specifically, the majority of the previous work on global scheduling have been
focusing on job-level migration, where jobs of different tasks may preempt on one
processor and later resume on another processor and jobs from the same task may
execute on the same processor or different processors. Global strategies have a bench
of disadvantages as compared with the partitioning strategies. Partitioning usually
has a low scheduling overhead compared to global scheduling, because tasks do not
need to migrate across processors. Furthermore, for global scheduling, a job that is
preempted on one processor and later resumed on another can potentially result in
additional communication costs and cache misses which is not the case for partitioned
scheduling.

Figure 2.4 Graphic representation of global scheduling strategy (Cheramy, 2014). Only one
queue is shared between all processors.

— Partitioned scheduling
For systems that contain more than one processor, we not only should decide about
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the appropriate scheduling algorithm on each processor, but also we have to specify
the allocation algorithm which assigns the tasks to the available processors. It is a
partitioned algorithm in which migration is prohibited, i.e. tasks and all of their jobs
are statically assigned to only one processor ; Hence the multiprocessor scheduling
problem is transformed to many uni-processor scheduling problems. In such approach,
as depicted in Figure 2.5, scheduling tasks in a multi-processor system can be seen as
a two-stage problem (Baker, 2005), (Bastoni et al., 2010). For each job of every task
one should be able to determine :
• on which processor the job should be executed (the so-called allocation problem) ;
• the time at which the job should be executed (scheduling problem), with respect

to the other jobs executing on the same processor,
In the context of a partitioned algorithms, the allocation problem can be solved by
mapping every task in the taskset to exactly one PE. In general, the number of possible
partitionings of a taskset of size N on a M -processor processor is exponential in the
number of tasks (MN). Therefore, it is often impossible to find the best (with respect
to a given performance metric) partitioning by exhaustive search in a constrained
amount of time. This problem can be seen as a variant of the traditional bin packing
problem (Johnson et al., 1974), which consists of deciding how to place N packages
with fixed volumes vi’s in the minimum number of bins of volume V . This problem
is known to be NP-hard (Coffman et al., 1997), (Johnson et al., 1974), and numerous
heuristics have been proposed for its solution. Among the simplest of these heuristics,
there are the fist-fit, the worst-fit and the best-fit algorithms (Johnson, 1973).

Figure 2.5 Graphic representation of partitioning scheduling strategy (Cheramy, 2014). Each
processor has its own queue to schedule mapped tasks.
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2.1.5 Scheduling on Multi-processor Systems

This section reviews some of the most important research works in the field of scheduling
for multi-processor systems. In (Hou et al., 1994), authors use a genetic algorithm ap-
proach to implement a multiprocessor scheduler, showing that it can achieve an error in the
range 0.6 − 17.5% with respect to the optimal scheduling. Kwok and Ahmad describe 27
algorithms for the scheduling of programs represented by directed task graphs on identical
multi-processors, a problem which is NP-complete in general (Kwok and Ahmad, 1999). The
paper recognizes that the problem of extending these approaches to heterogeneous systems
is nontrivial. Kianzad and Bhattacharyya review different methodologies for the partitioning
and mapping of tasks to processors, discovering that no clustering algorithm strictly domi-
nates the others but that the quality of the clustering is crucial to the overall performance
of the scheduler (Kianzad and Bhattacharyya, 2006). Zhuravlev et al. extend the discussion
about multi-processor scheduling with a survey of approaches taking into account shared
resources, noting that multi-processor systems performance cannot be accurately predicted
without considering contention (Zhuravlev et al., 2012a). In (Koufaty et al., 2010), authors
propose “bias scheduling” as a way to cope with heterogeneous systems. The architecture
considered in (Koufaty et al., 2010) is composed by a single large processor and three smaller
processors. Bias scheduling affects which jobs should be migrated to which processor when
the system is imbalanced, and it can be integrated on top of any other scheduling algorithm.
In (Van Craeynest et al., 2012a), authors conducted their research on the same platform used
in (Koufaty et al., 2010), introducing a more sophisticated model to predict the performance
of a task on a specific processor without having to execute it. Braun et al. compared 11 heuris-
tics for the scheduling of tasks on a heterogeneous set of machines, a problem whose optimal
solution is, in general, NP-complete (Braun et al., 2001). Experimental results showed that
genetic algorithms consistently performed best. Other heuristic and biologically-inspired me-
thodologies for scheduling in heterogeneous multi-processors can be found in (Tumeo et al.,
2008) and (Sih and Lee, 1993). Davis and Burns (Davis and Burns, 2011b) provide an ex-
cellent survey of real-time scheduling algorithms for multi-processor systems. They review
both partitioned and global approaches, noting that the use of partitioned scheduling allows
to exploit a wealth of results on schedulability and optimality for single-processor systems.
However, heterogeneous systems are explicitly excluded in this survey.

In recent years, however, we have seen an increasing number of publications dealing with the
real-time scheduling of tasks over a particular type of multi-processor architectures : uniform
multi-processor systems. In uniform architectures, according to the taxonomy given by Davis
and Burns (Davis and Burns, 2011b), each task receives an equal speed-up s moving from
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one processor to another. Funk and Baruah provide an approximate utilization bound for
the partitioned scheduling of periodic real-time tasks in such systems (Funk and Baruah,
2005). Niemeier et al., extend the analysis of approximate solutions to tasksets composed
by independent jobs and shared memory multiprocessors (Niemeier et al., 2011). In (Raravi
and Nelis, 2012) and (Raravi et al., 2012),authors focus on an even more specific family of
architectures : two-type heterogeneous multiprocessors. They provide polynomial complexity
algorithms to solve approximately the task-to-processor assignment problem in this context.

In literature, few works deal with the scheduling problem of fully heterogeneous multi-
processor systems, which is addressed by our work. In (Moreira et al., 2007a), authors present
a real-time scheduling algorithm for heterogeneous multi-processors mixing time-division mul-
tiplexing and static-order scheduling. This is a global static-priority algorithm that requires
the solution of a linear-programming optimization problem. Qin and Jiang (Qin and Jiang,
2005) propose a heuristic-based, reliability-driven real-time scheduling (global and dynamic-
priority) algorithm for heterogeneous multi-processor that “reduces reliability cost by up to
71.4%”.

2.1.6 Mapping Strategies

Since the introduction of multiprocessor systems into the market, a lot of effort was put
into exploring new techniques to fully exploit these hardware platforms. As systems grow in
complexity, different performance requirements are needed of the hardware. To cater to this,
heterogeneous multi-processor systems have become increasingly involved and methodologies
that could efficiently allocate software components to these types of platforms highly de-
manded. Here, we classify these techniques into (1) static ; methodologies that perform the
allocation at design time and cannot therefore be altered afterwards, and (2) dynamic, which
involve techniques that map the tasks at run-time.

Design-time mapping strategies are applicable to static scenarios where the system behavior
such as computational load and communication are known ahead of time and the hardware
platform considered is static. These types of systems are not expected to deal with new
applications at run-time as is the case with multimedia applications.

Dynamic techniques, on the contrary, face the challenge of mapping applications onto a
hardware platform at run-time while considering new incoming tasks or a change in system
parameters and adjusting the mapping to satisfy the resource requirements. Although our
research scope focuses on systems with static behaviour, we mention a few works that tackled
the mapping problem at run-time.
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Heuristics were proposed in (Mehran et al., 2008), (ter Braak et al., 2010), (Hong et al.,
2009), (Carvalho, 2010) to map tasks at run-time when new applications arrive and no
prior knowledge of the behaviour of these applications. In (Mehran et al., 2008)(ter Braak
et al., 2010), authors propose a dynamic spiral mapping that searches the allocation of
tasks in a spiral way. Mehran proposed a new strategy that aims on optimizing energy by
considering a homogeneous 2D-mesh topology and placing the highest communicating task at
the center of the mesh (Mehran et al., 2008) . An improvement of 29% was observed in (Hong
et al., 2009) when migration of tasks to other processors in a homogeneous architecture to
balance workload variation was performed. In (Brião et al., 2008), authors proposed a method
that relies on Dynamic Voltage Scaling and turned off idle processors to reduce energy as
well as reduce execution time. A heuristic was proposed in (Carvalho, 2010) to reduce the
communication overhead on the NoC and hence decrease execution time over a heterogeneous
multiprocessor architecture.

These techniques, having no prior knowledge of the new applications, can not guarantee
schedulability. For such, other methods were proposed for run-time mapping that rely on
static DSE where knowledge of potential future additions are considered in exploring mapping
configurations and stored for run-time situations. For further reading, these works (Ykman-
Couvreur, 2011), (Singh et al., 2011), (Siegel et al., 2006), (Jia and Pimentel, 2010) can be
examined.

When it comes to more critical systems, static mapping techniques are widely preferred.
Graph theory concepts were employed by (Khoroshevsky and Kurnosov, 2009) to partition
the global task graph and map partitions onto a multiprocessor clusters system with hete-
rogeneous network channels and differing topologies. (Xu et al., 2015) proposed a methodo-
logy based on streaming graph partitioning that is aware of the heterogeneity of the system
to reduce the overall execution time of partitions. (ZHOU and XIONG, 2012) proposed a
weighted Round Robin to allocate tasks and reduce power consumption. The works in (Ascia
et al., 2004)(Hu and Marculescu, 2005)(Marcon, 2008) focused on reducing both the energy
consumption and execution time. (Hu and Marculescu, 2005)(Marcon, 2008) concentrated
on communication by reducing energy in communication and including the communication
times in the optimization algorithms.

(Orsila et al., 2007), (Lin and Wang, 2005), (Ascia et al., 2004), (Choi et al., 2012), (Piscitelli
and Pimentel, 2012) proposed techniques that searched a near-optimal mapping solution
while optimizing a set of parameters. Simulated Annealing was used to reduce execution
time, memory consumption in (Orsila et al., 2007) and throughput in (Lin and Wang, 2005)
considering a homogeneous architecture. Genetic algorithms were extensively explored in
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this concept. (Ascia et al., 2004) based their approach on a GA to explore pareto fronts for
efficient energy consumption and optimized execution times. (Choi et al., 2012) also proposed
a GA-based approach to efficiently execute Synchronous Data-flow systems on heterogeneous
multi-processor architectures. (Piscitelli and Pimentel, 2012) proposed a hybrid technique
that combined analytical analysis with simulation results to estimate the system throughput
and employed a multi-objective NSGAii to explore the DSE and optimize execution time and
system cost. NSGAii was also used in the proposed approach by (Devi and Anju, 2014) to
map dependent tasks in a heterogeneous environment to minimize makespan and reliability
cost. A hybrid GA integrating Particle Swarm Optimization was proposed in (Bergamini
et al., 2009)(Kang and Zhang, 2012) that considered the precedence of tasks in the system.
Precedence was taken into account in the works of (Miryani and Naghibzadeh, 2009a) as well
where a multi-objective GA was proposed to map tasks on a heterogeneous multiprocessor
system in order to optimize execution time and reduce the number of processors in the system.

2.2 Data Stream Clustering

Even if our aim at the beginning was to propose an online clustering algorithm allowing
the classification of generated design implementations on the fly to incorporate designer pre-
ferences in the search engine, we went one step further. Thus we proposed a fully online
clustering algorithm that have the capability discovering arbitrary shaped clusters with re-
duced timing and memory cost. Data stream clustering is motivated by emerging applications
involving massive datasets (Guha et al., 2003). An exhaustive survey of data stream clus-
tering algorithms and relevant applications is given in (Silva et al., 2013). It includes, for
instance, bearing prognostics, forest cover, grid computing, sensor networks, network intru-
sion detection, stock market analysis, etc. When designing data stream clustering algorithms,
several requirements have to be considered and various issues need to be addressed, mainly, in
terms of run-time and memory needs. Due to the wide spectrum of application domains and
model constraints, the research in data stream clustering has gained a high attraction. In be-
low we review some of the most important related research works. Broadly speaking, we can
classify the related work on data stream clustering into the following four clustering tech-
niques, namely density-based algorithms, partitioning algorithms, hierarchical algorithms,
and grid-based algorithms.

2.2.1 Density-based Algorithms

Density-based algorithms aim mainly on finding arbitrary shaped clusters and noise filte-
ring based on the density. The basic idea behind this technique is to keep increasing cluster
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cardinality i.e. number of members as long as its local density reaches a predefined certain
threshold. Density reachability and density connectivity concepts were introduced to refine
the algorithm’s process. In the context of density-based algorithms, clusters are dense regions
(i.e. maximal set of density connected data points), separated by regions of lower density.
A series of density-based algorithms have been developed in literature. Hereafter, we give a
brief overview of these algorithms ; DBSCAN (Density Based Spatial Clustering of Applica-
tions with Noise) has been proposed by Martin Ester, Hanz-Peter Kriegel’s group in (Ester
et al., 1996). DBSCAN is considered as the prototypical density-based clustering approach
and the most used one. DBSCAN aims on estimating the density surrounding each data
point by counting the number of members in a predefined eps neighborhood compared to a
certain threshold to identify processor region and outliers. Later, core samples join clusters if
they are density-reachable and border points are assigned to clusters. In (Ester et al., 1998),
authors proposed an incremental version of DBSCAN allowing gradual modifications of the
dataset. After each iteration micro-cluster connections are created and broken according to
the changes. The main disadvantage of this incremental version is that the whole dataset
is required to be available for each iteration or update. Another well-known algorithm is
OPTICS (Ankerst et al., 1999) (Ordering Points To Identify the Clustering Structure). The
basic idea behind OPTICS is similar to DBSCAN while tackling one of the most important
limitations of DBSCAN consisting of the way meaningful clusters with varying density is
detected. In (Hinneburg et al., 1998), authors proposed DENCLUE (DENsity-based CLUs-
tEring) which is one of the most effective unsupervised clustering algorithms allowing the
classification of voluminous data. DENCLUE is based on the concept of density closeness
and the hill-climbing algorithm.

2.2.2 Partitioning Algorithms

Partitioning algorithms (a.k.a. iterative relocation algorithms) categorize the data samples
into a pre-defined fixed number k of clusters. These algorithms aims on optimizing a given
criterion by iteratively relocating data points by moving them from one cluster to another.
The clustering is based on the following conditions : (1) each cluster contains at least one data
point and (2) each data point belongs to only one cluster. To improve the partitioning, it uses
an iterative relocation procedure which moves objects from one group to another. A common
measure of partitioning quality is the degree of similarity (e.g. Squared Euclidean distance,
Mahalanobis distance, Minkowski distance) between data samples belonging to the same
cluster, as data samples of different clusters. The main drawback of such simple technique
is unsuitable for discovering complex non-linear (arbitrary) shaped clusters of voluminous
datasets. An incremental version of k-means has been proposed in (Macqueen, 1967). This
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sequential version was adapted for streaming data and generated hyper-spherical clusters.
This algorithm adds cluster centroids gradually as clusters are being formed. In (Ng and
Han, 1994), authors proposed CLARANS which is an efficient medoid-based clustering al-
gorithms based on randomized search. CLARANS draw samples of neighbours dynamically.
The clustering process searches on the graph where every node is a potential solution, that
is, a set of k-medoids. Generally, partitioning algorithms are time consuming and cannot be
proficiently applied to the voluminous datasets.

2.2.3 Hierarchical Algorithms

Hierarchical algorithms are based on constructing a hierarchy of clusters (a.k.a. dendrogram)
which iteratively divides the dataset into smaller subsets until each subset contains single
data sample. This technique involves creating clusters that have a predetermined ordering
from top to bottom. In this hierarchy, each node of the tree represents a group of similar data.
The cluster hierarchy can be formed from leaves to root in an agglomerative approach or the
opposite in divisive approach (Murtagh, 1983). The merge or split process should be stopped
whenever the pre-defined stopping criterion is met. Among these algorithms we cite CURE
(Clustering Using Representatives) (Guha et al., 1998) which is designed to handle large
datasets that is more robust to outliers and identify clusters having non-spherical shapes.
To do this, CURE employs a mixture of random sampling and partitioning. In (Karypis
et al., 1999) authors proposed CHAMELEON that measures the degree of similarity between
two clusters is based on a dynamic model. To group data samples, CHAMELEON aims on
maximizing the intra-cluster similarity and minimizes the inter-cluster one. CHAMELEON is
applicable to all types of data as long as a similarity matrix can be constructed and requires
the prior knowledge of the number of clusters to be created. In (Zhang et al., 1996) authors
proposed BIRCH which is an unsupervised data mining algorithm that has been applied for
data stream mining. BIRCH introduced the use of micro-clustering and macro-clustering.
It scans the database to build an in-memory tree before applying clustering algorithms to
cluster the leaf nodes. A major limitation of hierarchical algorithms is that as soon as two data
points are grouped together, they cannot move to other groups in the tree. Thus, migration
is prohibited between the clusters.

2.2.4 Grid-based Algorithms

Grid-based algorithms explore multi-resolution grid data structure in clustering. It subdivides
the data space into a limited number of cells to form a grid structure. This partitioning of
the data space is based on the prior knowledge of data granularity. It allows the detection of
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dense regions from the cells in the grid. The main advantage of this method is its scalability
given that grid-based algorithms are typically independent of the number of data objects, yet
dependent on only the number of cells in each dimension in the quantized space. Wang et
al. proposed a STING (STatistical INformation Grid-based method) for spatial data mining
(Wang et al., 1997) in the grid structure. The quality of the resulting clustering depends on the
granularity of the lowest level of the grid structure. Finer granularity of the grid cells leads to
higher quality of the obtained clustering and the cost of processing will increase substantially.
Another well-known grid-based clustering approach is WaveCluster (Sheikholeslami et al.,
1998). WaveCluster the method is not sensitive to the order of the number of input data
samples to be processed. WaveCluster uses a wavelet transformation to transform the original
feature space. WaveCluster is well capable of finding arbitrary shape clusters.

2.3 Conclusion

In this chapter, we presented a revision of fundamental concepts and an overview of the
related research contributions that are necessary to address the dissertation objectives. This
research contributions addresses two complementary areas : embedded real-time systems
design optimization and online data-stream clustering. Not to weigh down the discussion
with unnecessary repetition and in order to improve the quality of the synthesis brought
forward, the listed articles provide extensive discussions of the aforementioned related work
and recapitulatory tables comparing them to our propositions.
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CHAPTER 3 PARTITIONING PROBLEM FORMULATION

In this section, we define the formulation dedicated to mapping and scheduling of real-time
applications on multi-processor systems. We start by providing a formulation for real-time
applications. After that, we introduce the way we model the execution platform. Then, we de-
fine a formulation for schedulability analysis. Finally, we finish with a particular formulation
of the mapping problem.

3.1 Real-time Application Model

Real-time systems can be easily represented as a graph, where sub-systems (tasks) are nodes
and their data dependencies are edges. We formally define the graph modeling as G =<
T,E >, where T = {ti|i ∈ {1, ..., n}} is a set of n vertices, each one representing a real-
time task and E = {eij|(i, j) ∈ {1, ..., n} × {1, ..., n}} is a set of edges that represents the
dependencies among these tasks. The edges are weighted by the amount of data exchanged
between each pair of connected tasks. Such graphs are commonly referred to as task graphs.
We assume that there are n tasks and m processors belonging to different machines. Also,
we assume that all the tasks are preemptive. Each processing unit can execute one task at
a time, so that the system can process m tasks concurrently. Each task is defined as a tuple
τi =< Ci, Ti, Di,Πi,Φi >, where : Ci is the task execution time vector modeling the expected
execution time cij to complete task ti on processor pj, Di is the deadline of the task ti, Πi

its priority and Φi its phase. At run-time, the processor executes the task with the highest
priority that has work pending. Each task τi generates an infinite sequence of jobs. The
inter-activation times of τi are characterized by a fixed period Ti.

We start by defining the tasks expected execution time on the execution platform. This
information is defined by specifying a (n ×m) matrix named Execution Time Matrix (C),
where cij is the expected execution time of the task i on processor j. This model expresses
the execution heterogeneity among the execution platform resources. The elements along a
row indicate the execution times of a specific task on the different processing units, and those
along a column indicate the expected execution time of all tasks on a single node. For this,
we represent execution times of modules with a matrix.

We also need to define the amount of data exchanged between each couple of tasks. This
information is defined in a square matrix (n×n) that we called Communication Cost Matrix
(CC), where CC(i, j) is the the weight of the edge connecting ti to tj and defined as eij. This
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matrix is known as the adjacency matrix. CC is an upper triangular matrix since the data
exchanged between tasks ti and tj are the same as the amount of data exchanged between
tasks tj and ti. The main diagonal entries are equal to zero.

Another important feature to consider in our model is the memory consumption of each task.
This information is defined in a Memory Consumption Vector (M) with n elements where
each term mi describes the amount of static memory needed to execute task ti.

The utilization rate of a task represents the fraction of time that the task consumes on a
processor to complete its execution. This ratio is widely used in schedulability analysis and
as performance metrics to a evaluate a partitioning and/or a schedule. A task with high
utilization rate will be considered as heavy task, and instead a task which the utilization rate
is low will be qualified as a light one.

— Utilization rate of task i
ui = Ci

Ti
(3.1)

— Processor utilization

Utot =
kj∑
j=1

ui (3.2)

— Average utilization rate per processor

ū = umax
m

(3.3)

— Maximum utilization rate
umax = mmax

i=1
(ui) (3.4)

— Minimum utilization rate
umin =

m
min
i=1

(ui) (3.5)

All the aforementioned parameters shown in this section are summarized in Table 3.1

3.2 Execution Platform Model

A Heterogeneous multi-processor system is a complex yet powerful architecture widely used in
industry, covering different domains such as aerospace, automotive and avionics. The multi-
processor systems used in this work is heterogeneous in its broadest terms, i.e. a given task
τi might execute faster on processor ms than on PE mt while the opposite might be true for
another task τj. In the following, we will indicate the WCET of task τi on PE ms as Ci,s. This
is a generalization of both the homogeneous model, where all tasks have the same execution
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Table 3.1 Real-time System Model Symbols with their Descriptions

Symbole Description
n Number of tasks
m Number of processors
τ Task set τ1, τ2, ..., τn

τi ith task of the taskset τ
ki Number of tasks mapped to processor i
Ti Period of task i
Di Deadline of task i
Ci Worst-case execution time vector of task i
cij Worst-case execution time of task i on processor j
Πi Priority task i
Φi Phase of task i
ui Utilization of processor i
Utot Total processor utilization i
umin Minimum processor utilization
umax Maximum processor utilization
eij Amount of data exchanged between τi and τj

time one each processor (i.e. ∀i ∈ [1..N ] ∀s, t ∈ [1..M ] , Ci,s = Ci,t), and the uniform model,
where all tasks have the same speed-up going from one processor to another (Davis and
Burns, 2011b) as depicted in equation 3.6 :

∀i, j ∈ [1..n] ∀s, t ∈ [1..m] , Ci,s/Ci,t = Cj,s/Cj,t (3.6)

3.3 Schedulability Analysis

In the partitioned scheduling adopted in this thesis, whenever the mapping phase is proces-
sed, the taskset assigned to each PE is scheduled accordingly using a uni-processor Rate-
monotonic scheduling policy. RM is an optimal static scheduler and by far the most used
real-time algorithm and it is one of the easiest policies to implement. RM is a static-priority
scheduling algorithm for real-time systems (Mohammadi and Akl, 2005). It is a preemptive
algorithm that assigns higher priorities to the tasks with shorter periods Ti.

Ti ≤ Tj ⇔ Πi ≥ Πj (3.7)
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The Liu & Layland bound (Deb et al., 2002) is a schedulability test that provides a suffi-
cient condition for a taskset to be schedulable when using an RM scheduling policy. Liu &
Layland proved that a feasible schedule (i.e. that will always meet deadlines) exists if the
total processor utilization U is below a specific bound. For each task-set ζj composed of kj
tasks assigned to processor j, the task-set is guaranteed to be schedulable if this test yields.
The necessary condition to verify the schedulability of ζj based on the processor utilization
bound, is defined as :

Uj =
kj∑
i=1

cij
Ti
≤ kj.(2

1
kj − 1) (3.8)

Alongside the Liu & Layland bound test, another sufficient schedulability test for RM sche-
duling was proposed by Bini et al. (Bini et al., 2003), who introduced the hyperbolic bound :

kj∏
i=1

(
cij
Ti

+ 1
)
≤ 2 (3.9)

In our work, we rely on the more restrictive Liu & Layland bound defined in Equation (3.8).

3.4 Mapping Problem Formulation

Heterogeneous multiprocessor systems are growing in importance in parallel architectures (Hill
et al., 2008) and have been drawing increasing attention from both industrial and research
communities. These systems can guarantee a significant increase in performance by provi-
ding a large number of unbalanced parallel powerful execution resources. The improvement
in performance gained by the use of a heterogeneous multi-processor system depends widely
on the way software algorithms will exploit it and efficiently distribute workloads between its
processing elements. Therefore, the step consisting on mapping tasks to processing elements
has been extensively addressed and is in the middle of the storm for hardware and software
communities. In concrete words, this step consists on finding the optimal assignment of n
tasks modeling the application on the m processors of the target architecture. Since the pro-
posed methodology rely on partitioned static scheduling, the mapping phase is a fundamental
step in the optimization process. Thus, we can rely on complex, yet powerful algorithms to
get closer as much as possible to the optimal solution.

This problem of assigning tasks to processors can be seen as a variant of the quadratic
assignment problem, Bin packing. In this classic problem, objects of different sizes must
be packed in a finite number of boxes with fixed capacities in a way that minimizes the
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necessary number of boxes. In our case, the items to store are the tasks and boxes are
processors that have limited capacity beyond which valid scheduling can not be assured.
Sufficient schedulability tests are used in our work to verify that the chosen algorithm will
be able to correctly schedule tasks on each processor. Stirling numbers of the second kind
count the number of ways to partition a set of n elements into k nonempty subsets. They are
denoted by S(n, k).

Finding a global solution to the partitioning problem through exhaustive methods is unfea-
sible. The order of complexity of this approach would be O(mn), where n is the number of
applications and k the desired partitions. The combination of all possible solutions is giving
by the Stirling Numbers of the Second Kind as depicted in equation 3.10 :

S(n, k) = 1
k! ×

k∑
j=0

(−1)k−j
k
j

 jn (3.10)

Based on this equation, the mapping problem permits to leave unused processors which gives
us the number of possible solutions defined by S ′(n, k) where :

S ′(n, k) =
m∑
k=0

S(n, k) =
m∑
k=0

1
k! ×

k∑
j=0

(−1)k−j
k
j

 jn (3.11)

Using a number of tasks relatively low, exact methods have been widely discussed in literature
to solve this problem. However, with bigger tasksets it becomes unrealistic to rely on exhaus-
tive search to find the best partitioning and it is better to use a heuristics, although faster,
but could possibly not find a valid partition while it exists or not the best valid partitioning.

In a mathematical formulation of the mapping problem, we define the function χ that assigns
each of n tasks to any of the m processors :

∀i ∈ [1, n],∃j ∈ [1,m] , χ(ti) = pj (3.12)

3.5 Conclusion

In this chapter we presented the formulation related to the problem of designing real-time
systems (i.e. mapping and scheduling). In the next chapter, we will recap the central research
questions by introducing the research methodology of this dissertation.
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CHAPTER 4 RESEARCH METHODOLOGY

This chapter presents the methodology, that we propose, to proceed towards the fulfillment
of all research objectives, explaining the rationale for each research phase and address the
challenges outlined in Chapter 1. This chapter provides a condensed but comprehensive view
of thesis methodology and main contributions.

4.1 Global View

The contribution of this dissertation provides for three significant deficiencies in the existing
research in embedded computing systems design : (i) the lack of efficient and effective online
clustering techniques that can be included in the search engine to make it smarter ; (ii) the fact
that most of automated DSE processes rely on the blunt application of existing heuristics
without incorporation of problem structure or designer preferences and (iii) the need of
sophisticated approaches to help designers to choose their preferred system implementation
for prototyping. Among the aforementioned list of papers (in Chapter 1), our focus, in this
dissertation, goes to four main contributions as depicted in Figure 4.1.

Figure 4.1 Overview of the main contributions in this dissertation.

1. At the beginning, a fully online clustering algorithm (DeDaSC) is proposed to classify
IoT embedded devices’ behavior. Every time DeDaSC receive a new data point, it
performs a set of operations to assign it to an existing cluster or create a new one by
its own on the fly.

2. Then, a multi-objective optimization evolutionary algorithm is implemented to dis-
patch the execution of real-time applications on heterogeneous distributed multi-
processor systems while ensuring system’s schedulability.



33

3. Later, we introduce a hypervolume-based approach (HypAp) to systematically refine
the design of embedded systems. This approach helps embedded systems designers to
pick the preferred implementation from a reduced Pareto front (in terms of cardina-
lity).

4. Finally, an improved genetic algorithm (ImGA) is proposed to enhance and guide
the search engine by taking into account the problem structure. The study focus on
maximizing the ratio of schedulable tasks mapped to a heterogeneous multi-processor
system.

The overview of the development flow of the proposed methodology is illustrated in Figure
4.2.

Figure 4.2 Global view of the developpemet flow of the main thesis contributions.

We divide the flow into five principle research steps : (a) The collection and estimation of me-
tadata necessary to be able to efficiently explore the design space 1 ; (b) the techniques to ex-
plore the mapping implementations of the real-time system application onto a heterogeneous

1. This part has been developed in collaboration with the PhD student Imane Hafnaoui



34

multi-processor architecture ; (c) the improved search engine that guides the exploration of
the design space ; (d) the decision making support incorporating designer preferences and
(e) the online clustering of streaming data that can be used in different stages of embedded
systems life cycle from design to usage.

4.2 Proposed Methodology

This section offers a survey of the two principal axes of research of this dissertaion. Firstly,
we focus on the data-stream clustering enhancing real-time embedded systems functioning.
Later, we will discuss in depth the various techniques proposed in this thesis offering designers
a panoply of optimization techniques to ameliorate the design process.

4.2.1 Online Data Stream Clustering

Data stream clustering refers to the process of grouping sequence of data that is too large
on the fly. Data points belonging to the same cluster presents higher degrees of similarity
than those belonging to other clusters. Nowadays, streaming data are omnipresent. Examples
include stock market analysis, bearing prognostics, forest cover, sensor networks, etc. The pro-
fusion of data streams in various engineering disciplines has led to new algorithmic paradigms
for processing them, which often impose very stringent timing and memory requirements on
the algorithm’s resources.

4.2.1.1 Online Clustering Applications

In the context of embedded systems, developing efficient online clustering policies can hugely
impact the quality of service (QoS) of these devices. Data-stream clustering algorithms take
advantage of the previous computations and experiences to discover repeatable patterns in
order to adaptively produce reliable and more autonomous devices. Tradionnaly, designers
have analyzed data and adapted embedded systems to the changes in data patterns. However,
as the volume of data surpasses the ability of humans to make sense of it and manually
detect these hidden patterns and classes, designers cannot perform such dynamic process. The
natural solution consists on automating techniques that can learn from the generated data
to adapt to a shifting landscape. The use of data stream clustering algorithms is broadening
to include various aspects of embedded computing systems. Consider the following :

— Smarter functioning
The huge size of streaming data generated by embedded devices represents their pri-
celess output. In order to make these devices smarter and more adaptive, extracting
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valuable knowledge from the non-stationary and unbounded streaming data is one of
the principal challenges for embedded computing systems community. Data stream
clustering serves as powerful tools to extract this hidden information in data stream
patterns.

— Designer preferences articulation
In a priori optimization techniques, decision maker preferences are explicitly outline
before launching the optimization process. A good practice is to express designer pre-
ferences as weights representing relative importance of the objectives. Once finished,
the best solution according to the given preferences is found. During the exploration,
online clustering can serve as a powerful tool to guide the search engine to specific
regions of the design space. This approach favors the implementations belonging to
clusters with higher weights to be selected for the subsequent generations.

— Aging detection
The results of behavioral changes obtained by direct application of online mining
techniques can be used to compare aging to each other between successive time frames.
Since embedded computing systems aging progresses over time, the occurrences of
changes in signs of aging will appear gradually. Thus, detecting these changes on the
fly allows the rapid discovering of suspicious behavior due to device’s aging.

— Anomaly detection
Online detection of performance anomalies in embedded systems functioning. Data
stream clustering helps to detect, at a fine granularity and during run-time, unknown
anomalies that may still be observed in complex modern systems. Such clustering
process provides designers the ability to perform root cause analysis and identify
potential corrective actions.

— Security enhancement
Online clustering of generated streaming data can be used to identify suspicious beha-
viors. Thus, online mining is concerned with protecting these omnipresent embedded
devices from corruption due to malicious software such as Trojan and viruses. The
real-time detection is primordial to prevent some catastrophic situation.

4.2.1.2 DeDaSC Processing Stages

In order to cluster generated data points (i.e. solution), DeDaSC goes through a list of ite-
rations. Our clustering algorithm addresses all these considerations and can be divided into
three parts that are detailed in below : (1) neighborhood discovering using incremental Delau-
nay triangulation (2) online micro-clustering, and (3) macro-cluster construction. Hereafter,
we give a summary of DeDaSC processing.
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— Initialization

The first step consists in creating three micro-clusters to construct the first triangle of the
Delaunay triangulation. For this purpose, the first three points are stored on primary memory
as three different micro-clusters regardless their spatial proximity.

— Micro-cluster Assignment

Whenever a new data point is linearly scanned, the micro-clusters are updated in order to
reflect the adjustments. Each data point either needs to be put in a new micro-cluster of
its own, or needs to be absorbed by a pre-existing micro-cluster. To make such substantial
decision with limited timing cost, we first refer to the most recent image of the Delaunay
triangulation at time. In many cases, the data point p may not be sufficiently close to this
micro-cluster which means that the distance is greater than the predefined magnetic attrac-
tion distance. Thus, p should be placed in a new micro-cluster of its own. If the data point p
falls in a populated region, than the incoming data point p is absorbed by this micro-cluster.
Subsequently, micro-cluster’s metadata and the Delaunay triangulation is updated.

— Macro-clustering

The macro-clustering stage will use, only, the compactly stored mature micro-clusters. The-
refore, it is not constrained by one-pass requirements. It is assumed that as input to the
algorithm, the user supplies macro-cluster attraction distance to merge overlapped micro-
clusters. Macro-clustering is a kind of a re-clustering process introducing a new scale at
which any mature micro-cluster that will be within the macro-cluster attraction distance of
the freshly updated micro-cluster will revise its membership to be the same.

By applying the aforementioned process, every incoming data sample is instantly cluste-
red and outliers are easily identified. Such approach maintains arbitrary shaped data space
regions of global clusters online. More details about the proposed data stream clustering
algorithm is given in Chapter 5.

4.2.2 Design Space Exploration

It has been a decade since microprocessor companies realized that it was fruitless to work on
improving processor technology by decreasing transistor size and hence increasing switching
speed. Due to an increase in leakage power and thermal constraints, the technology hit what
architects like to call the Power Wall (Guo et al., 2010). As a way out, manufacturers turned
towards MPSoCs. This created a wave of scientific research focused on solving problems
related to this topic.

Developing the expertise in the design of high-performing embedded systems hugely impact
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the power and capacities of IoT netwok. These MPSoCs will have the capacity to process the
generated data at the edge of the network in real time. Only a summary of these data or the
most pertinent of them will pass to the higher-level computing environments (i.e. Cloud data
centers). Therefore, offering new improved design techniques is of paramount importance to
succeed the general trend of transition from a centralized cloud computing to a more local
edge computing.

4.2.2.1 Automatic Design Space Exploration

A principal question, in the design of embedded systems, is how to efficiently and effectively
dispatch the workload of the software application on the processing elements of the target
execution platform. The problem becomes more complex when the system is a real-time
system where system behavior need to respect timing constraints. The problem of mapping
n jobs to m processing units is an NP-Hard problem. Finding a near optimal solution is
acceptable since finding the best solution in sensible time is impossible. For such, meta-
heuristics are widely used to solve this type of problem.

Design Space Exploration (DSE) pertains to the action of exploring design configurations,
solutions or alternatives while sub-optimal decisions need to be taken. The exploration pro-
cess can be performed by using mono or multi-objectives approaches. Due to the expansion
in terms of number of integrated processors in embedded systems and real-time applications
complexity, the number of possibile implementations that have to be considered increases
exponentially. This leads to an extremely huge search space. Even if abstract models reduce
simulation time by scaling down design complexity, inspecting all the possible solutions stills
an NP-hard problem in which exhaustive search is unrealistic and smarter ways of doing
exploration needs to be adopted. In this context, the use of meta-heuristics accelerates the
exploration process. Techniques borrowed from graph theory, machine learning and data mi-
ning could be used. The aim of these enhanced approaches is to reach sub-optimal solutions
with higher cost/performance ratio (i.e. quality) compared to those obtained with conven-
tional approaches.

Owing to the complexity of the exploration process, a highly efficient option consists on
automating the DSE in such a way that designer’s intervention is restricted to the definition
of the system model and the tuning of exploration parameters (i.e. meta-heuristic algorithm
parameters). As depicted in Figure 4.3, automating the exploration process leads to a colossal
reduction of processing time before getting the final sub-optimal solution(s). This significant
time gain reduces, simultaneously, prototyping cost and the time-to-market of the of the final
product.
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Manual Exploration Process

Automatic Exploration Process

Design Evaluation

Automatic Exploration Overhead

Manual Exploration Overhead

Figure 4.3 Comparison between a manual design space exploration approach and an auto-
matic approach in terms of search engine setup and overhead. Red boxes stand for the time
required to analyze the freshly evaluated solution and pick a new one for the next iteration.
Blue boxes stand for the time needed to evaluate new solutions.

As highlighted earlier, both manual and automatic DSE start by defining the system mo-
del, implementation constraints to differentiate feasible and unfeasible solutions and finally
optimization metrics. In the context of manual DSE, the exploration is performed with a
human-in-the-loop. In this type of DSE, the designer is a principal player that dramatically
influences the outcome of the search engine in such a way that it is difficult if not impossible
to inspect as many solutions as in the automated DSE. In every iteration, the designer (a.k.a.
decision maker), based on its knowledge, subjective assumptions and previous experience, will
tune manually the implementation modifying a limited number of parameters per evaluation.
This new solution is evaluated and, based on the simulation results, the same actions will
be made. Thus, an enormous amount of time is wasted on rectifying model parameters after
analyzing obtained results. In addition, decision maker needs a time lapse between the end
of the evaluation process and taking control of its output to be analyzed. The quality of
the resulting solutions obtained by manual DSE is highly correlated to the decision maker
acquaintance, skills and past experience to efficiently and rapidly assess the results and to
move towards the next iteration of the search engine.

An automated DSE engine utilizes a set of predefined optimization objectives combined with
effective meta-heuristics to conduct the exploration. The main idea behind this automatic
exploration is to conceive a configuration template which can be automatically handled to
produce any instance of the target design space. In practice, this means that the initialization
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phase of the automated DSE would last longer than, its opponent, the manual DSE. Given
the configurable model template, the automated search engine will extensively modify all or
most of the model parameters at each iteration before passing through the evaluation stage.
This automatic generation of the next solution to be evaluated is widely faster than the ma-
nual approach by systematically increasing the overhead by dint of human intervention. The
resulting implementations of the automated DSE flow is a set of sub-optimal configurations
which are, probably, close to the real Pareto set. In Figure 4.4, we present an overview of the
proposed automatic DSE Flow starting from designer’s specifications to the final prototype
and going through the evolutionary algorithm automating the search engine.

Designer

Pareto Front

Decision
Making

Pick the Preferred Solution

Evolutionary Algorithm

Initial Solution

Fitness reports

Specification

Application

model

Architecture

model

Performance 

Metrics

Objectives

Real-time 

Constraint

Tuning

Process

Results

Prototyping

Figure 4.4 The autuomatic design space exploration work flow. The process starts with the
specification of hardware, sofware and implementation models by the designer. The output
of the multi-objective evolutionary algorithm is the Pareto front.

4.2.2.2 Multi-objective Partitioning

Multi-Objective Optimization Algorithms (MOOA) tend to be harder to deal with as opposed
to their mono-objective counterparts since a final decision criteria is difficult to identify.
Regardless, MOOAs are advantageous in their ability to find a trade-off between a set of
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potentially conflicting metrics, especially with complex systems. We propose an approach
that relies on an MOOA to allocate n jobs onto m heterogeneous PEs while optimizing a set
of performance metrics and making sure the timing requirements are tended to as well. The
proposed algorithm is based on Non-dominated Sorting Genetic Algorithm (NSGAii) (Deb
and Agrawal, 2000).

4.2.2.2.1 Performance Metrics When working with complex systems such as FMSs,
which involve a large set of parameters, choosing the appropriate performance metrics be-
comes crucial to obtain an efficient mapping solution. On this basis, given that every module
in the system has its own real-time constraints and communication requirements, we de-
fine a set of performance metrics. These metrics represent the optimization objectives of the
exploration process.

1. Slack Time
Slack time is defined as the time that remains to a deadline of a workload after it
has finished executing. Figure.4.5 represents a case where a workload of 10 tasks is
mapped onto a platform with three PEs.

 

𝑡𝐶 𝑑𝑊 
𝑡 

 
𝑡6 𝑡2 𝑡8 𝑃𝐸1 

𝑃𝐸2 

𝑃𝐸3 

𝑡3 𝑡1 𝑡4 𝑡9 

𝑡7 𝑡0 𝑡5 

Figure 4.5 Total slack time within three (3) Processing Elements and ten (10) real-time tasks

The objective is to maximize the slack time by the fitness function f1 in equation.4.1.

f1 = maximize{ min
i∈PE

(dWi − tCi) } (4.1)

Integrating the system while taking this property into consideration will be a safety
measure for critical scenarios when the load is heavy and the workload takes longer
to execute than usual.



41

2. Communication Cost
In order to reduce the latency that the network traffic might increase, we add a fitness
function, f2, minimizing the traffic across the network. To do this, we consider the
amount of data exchanged between workloads running in different PEs, referred to as
inter-communication cost.

f2 = minimize{
∑
i∈k

∑
j∈p

wij } | k, p ∈ PE, k ∩ p = ∅ (4.2)

3. Memory Consumption
Our aim is to have a balanced memory load over the PEs. Thus, we define a fit-
ness function f3 to minimize the memory consumption of modules dispatched to the
different PEs. mij refers to the memory that task tj requires to execute on PEi.

f3 = minimize{ max
i inPE

(
m∑
j=1

mij) } (4.3)

In the bio-inspired GA, a given population represents a set of solutions to the problem and
new generations are created through genetic operators. According to the evolution theory,
only the strongest individuals of the population are likely to survive and generate offspring,
transmitting their biological inheritance to the next generation. NSGA-II varies from GA
not only in the fact that it addresses multi-objective optimization problems but also in
the selection operation. It also gives the non-dominated solutions belonging or near the
Pareto front in one single run. Before selecting a number of individuals to apply the genetic
operators on, the population is ranked on the basis of the non-dominance and crowding
distance concepts. More details about the proposed implementation of NSGA-II is given in
Chapter 6.

4.2.2.3 Decision Maker Support

In multi-objective optimization there is no unique optimal solution but rather a set of efficient
solutions, also known as Pareto solutions. The set of all the Pareto solutions constitutes
the True Pareto Front (TPF). Pareto-based exploration approaches, such as evolutionary
algorithms, aims at finding the solutions approximating the TPF. However, the large size
of the TPF constitutes the major shortcoming of such techniques : the main challenge for
designers facing such a large TPF is how to effectively select their preferred solution.

From the designers’ perspective, evaluating all the near-optimal solutions (i.e., non-dominated
solutions) is quite unrealistic. On the other hand, selecting a preferred solution from a large
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TPF is potentially unfeasible. Therefore, a possible solution is to provide a refined repre-
sentation of the Pareto Front optimal solutions (i.e., a subset of solutions belonging to the
TPF) to which we refer as the Reduced Pareto Front (RPF). Selecting the most significant
and representative solutions from a TPF, the novel contribution of this work is in developing
HypAp, a hypervolume-based automated approach generating a RPF that is much smaller
in size compared to the TPF, and yet maintains the main characteristics of the TPF. HypAp
helps refine the design of embedded systems through guiding the system designers effectively
choose their preferred solutions, now from a RPF includes a few solutions, obtained after
applying a multi-objective optimization.

Pareto clustering

Elbow Method

K-means Clustering

Selected representative 
Implementations

Pareto Front

Monte-carlo estimation 
of hypervolume

Subset 
selection

New subset

Recombination

Subset selection

Figure 4.6 The work flow of HypAp. The proposed approach relies on two stages. (1) Pareto
clustering and (2) subset selection via hypervolume maximization.

As depicted in Figure 4.6 HypAp is a two-stage approach : Pareto optimal solutions will
be first clustered and then a subset of solutions that maximizes the hypervolume will be
selected by employing a genetic algorithm. Please note that different performance metrics
that need to be optimized during the DSE have a large size or great variability due to their
different distributions and orders of magnitudes. Consequently, this kind of variability can
lead to a knock-on effect on the clustering result. Therefore, prior to clustering, we norma-
lize the fitness values of the performance metrics by adjusting them (on different scales) to
notionally averages (a.k.a. feature scaling). The resulting fitness values lead to a better sym-
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metry, and hence more accurate learning in the clustering. More details about the proposed
Hypervolume-based approach is given in Chapter 7.

4.2.2.4 Schedulability Guided Exploration Engine

Evolutionary algorithms have already proven to be one of the most powerful and widely used
stochastic tools for the implementation of partitioned scheduling. Standard or conventional
genetic algorithms that mimic the process of natural selection were initially defined as a
general evolutionary algorithm based on blind genetic operators (selection, crossover, muta-
tion). While they are known by their ability to explore the solution space of small problems,
this benighted exploration reveals a considerable weakness with bigger problems presenting
sizable solution spaces. It is commonly admitted that the use of these operators is quite
poor for an efficient exploration. Likewise, since exhaustive exploration of the solution space
is unrealistic, a potent option is often to guide the exploration process by hints, derived by
problem structure. This guided exploration prioritizes fitter solutions to be part of next gene-
rations and avoids exploring unpromising configurations by transmitting a set of predefined
criteria from parents to children. Consequently, genetic operators, such as crossover, must
incorporate specific domain knowledge to intelligently guide the exploration of the solution
space. In order to find better solutions rapidly, exploration is often aided by a guided strategy.

The endeavor of this work is to propose an Improved Genetic Algorithm (ImGA) to guide
the exploration process and extensively ameliorate the conventional GA findings. We find an
overview of ImGA in Figure4.7. Thus, we are proposing a climbing hill repairing strategy
for the population initialization. This strategy aims on adjusting the randomly generated
solutions by incorporating a local search algorithm. This climbing hill technique iteratively
apply local changes on the generated chromosomes to find a fitter one in its neighborhood.
Later, crossover operator is considered as the fundamental search operator of evolutionary
algorithms. This operation occurs during evolution according to a user predefined probability.
The aim of this operator is to generate a new better chromosome than both of the parents
by taking the best characteristics from each one of them. By adopting classical crossover
operator, the new solutions are generated by simply swapping random sections of the two
parents. However, this random choice is unable to guarantee the best choice. While standard
crossover operators do not involve any intelligence during the exploration, in the recent
past, a lot of effort has been put into the development of sophisticated crossover operators
to guide the exploration in different problems. Thus, we integrated a schedulability-guided
crossover operator to be part of our improved algorithm. Then, maintaining a vast population
diversity is crucial to ensure that the design space was appropriately explored and avoid
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premature convergence by stagnating on sub-optimal solutions. To face this problem, we
propose two main contributions ; (1) a circular mutation operator switching the workload
of the heaviest and lightest processors. (2), a restart technique based on injecting randomly
generated solutions at advanced stages of the optimization engine giving a new impetus to
the remaining generations.

Min-max circular 
mutation operator MMM

Performance 
metric evaluation

Generate initial 
population

Climbing hill 
repairing strategy

Mating pool 
generation

Schedulability guided 
crossover operator SGX

Stopping
criterion ?

Stagnation 
detected ?

N

Search engine

Best configuration

Solution encoding

N

Y

Y

Generate artificial 
chromosomes

Select victim 
chromosomes

Inject artificial 
chromosomes

Figure 4.7 Improved Genetic Algorithm work flow. This hybrid version is based on a climbing
hill repairing strategy for population initialization, schedulability guided crossover, min-max
circular mutation operator and injection policy for better diversity.

Experimental results show that the guided search approach based on the proposed improve-
ments leads to better findings compared to the conventional evolutionary algorithm. To the
best of our knowledge, there is, as yet, no previous work in the literature tackling the problem
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of guiding the solution space exploration process using a sophisticated evolutionary operator
in the context of mapping real-time applications on heterogeneous multi-core systems. More
details about the proposed improved genetic algorithm is given in Chapter 8.

4.3 Conclusion

In this chapter, we studied the main research axes of this dissertation and the methodolo-
gies put in place in order to tackle the thesis research questions. In the four next chapters,
we will present four journal paper adressing in depth these questions. We start by introdu-
cing, in Chapter 5, the first paper entitled DeDaSC : Delaunay Triangulation-based Data
Stream Clustering Algorithm for the Internet of Things. Then, in Chapter 6, we present the
second paper entitled Multi-objective Mapping of Full-mission Simulators on Heterogeneous
Distributed Multi-processor Systems in which we study the case of flight simulators. Later,
HypAp : a Hypervolume-Based Approach for Refining the Design of Embedded Systems will
be the subject of the Chapter 7. At last, Chapter 8 will be dedicated to the fourth paper en-
titled ImGA : An Improved Genetic Algorithm for Partitioned Scheduling on Heterogeneous
Multi-core Systems.
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CHAPTER 5 ARTICLE 1 : DEDASC : DELAUNAY
TRIANGULATION-BASED DATA STREAM CLUSTERING ALGORITHM

FOR THE INTERNET OF THINGS

Rabeh Ayari, Imane Hafnaoui, Sébastien le-Beux, Giovanni Beltrame, Gabriela Nicolescu
Submitted to Transactions on Emerging Topics in Computing

Abstract : The Internet of Things (IoT) is a worldwide network of interconnected objects. It
is built on people, physical devices, vehicles, smart homes, data-gathering sensors, actuators,
etc. Heterogeneous communication protocols enable these objects to collect, exchange data
and update the pre-configured functioning. The huge size of streaming data generated by
IoT devices represents its priceless output. In order to make these devices smarter and more
adaptive, extracting valuable knowledge from the non-stationary and unbounded streaming
data is one of the principal challenges for IoT community. Emerging data mining techniques,
such as data stream clustering, represent an effervescent research issue and serve as powerful
tools to extract this hidden information in data stream patterns. In information retrieval,
the intrinsic nature of data stream clustering requires computationally and memory effec-
tive incremental processing of incoming data. In this paper, we introduce a new Delaunay
triangulation-based Data Stream Clustering algorithm (DeDaSC) able to construct arbitrary
shaped clusters on the fly without any prior knowledge of the number of clusters and their
shapes. DeDaSC requires only the newly arrived data, not the entire dataset, to be saved
in memory. An incremental Delaunay triangulation is introduced to guarantee the effective-
ness of the neighborhood discovery with limited computation time and memory space. Our
performance studies over a number of synthetic datasets demonstrate the efficiency of our
algorithm to create arbitrary shaped clusters as they evolve in a fully online manner. Experi-
mental results on these datasets show that DeDaSC can discover clusters that many existing
state-of-the art clustering algorithms fail to find.

5.1 Introduction

In recent years, the Internet of Things (IoT), a.k.a. the Internet of Objects, attracted the
attention of researchers from academia and industry throughout the world. Introducing IoT-
based products and services has been a growing trend thanks to rapid advances of numerous
technologies, including ubiquitous sensors, actuators, biomedical systems, and real-time em-
bedded systems. Due to the exponential growth of IoT networks, in the next few years, more
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devices will join that list. According to Gartner, Inc. (Fenn and Raskino, 2011), more than
20 billion connected objects will be in use worldwide by 2020. The aim of such tremendous
heterogeneous network is that all these objects will be controlled, monitored, detected by
other objects, communicate together, and can even make autonomous decisions.

This huge expansion in terms of connected devices will raise the scale of produced data to
an unprecedented level. These massive amounts of data are generated unceasingly and in
a highly fluctuating rate. Cisco reported that IoT networks will generate more than 400
zettabytes (trillion gigabytes) of data a year by 2018 (Index, 2015). Therefore, it is essential
to consider how efficiently to manage and analyze these data to transform the information into
knowledge for smarter decisions in the future. The mining task enables IoT manufacturers
to aggressively leverage these data in key business decisions and processes, with impressive
results.

Such process requires advanced and computationally effective cognitive computing tech-
niques. Fortunately, data mining techniques avail of these voluminous data to improve their
learning capabilities to discover hidden patterns. In practice, the generated data by IoT
objects arrives continuously and needs to be processed on the fly. This kind of dataset is ap-
propriately referred to as data streams. For ease of understanding, data stream can be seen as
a river : data come in and come out as reported in (Suresh et al., 2014). Data points are scan-
ned only once and hidden patterns are constructed progressively. This real-time knowledge
extraction process makes the mining task more challenging. Therefore, using conventional
clustering algorithms certainly lead to misleading output (Aggarwal, 2007; Muthukrishnan
et al., 2005; Babcock et al., 2002; Golab and Özsu, 2003; Amini et al., 2014). Traditional
offline methods are appropriate only for resident data stored in large data repositories and
consequently cannot address the problem of a continuous supply of data with temporal loca-
lity (Aggarwal and Reddy, 2013).

Data mining is a computing process that covers a wide spectrum of data analysis and know-
ledge retrieval techniques, including classification, prediction, outlier analysis, and clustering
(Fayyad et al., 1996). In this context, several data stream clustering algorithms have been
proposed to perform unsupervised learning. Data stream clustering is a useful and ubiquitous
tool in data analysis that assigns on the fly incoming data into groups whose members present
higher degree of similarity than others. Prior clustering research has largely focused on static
datasets. The nature of streaming data requires the development of sophisticated algorithms
capable of performing fast and incremental processing of data objects, suitably addressing
time and memory limitations. Likewise, data stream clustering algorithms should be able
to detect whenever new clusters should appear, disappear i.e. being fused. Also, they need
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to have the capacity to dynamically distinguish outliers a.k.a. noise from potential clusters
(Guha et al., 2003).

Based on the aforementioned considerations, a rich body of fundamental research in clustering
has emerged in the data stream model of computation. Most of the proposed algorithms are
either hybrid (online/offline) methods, windowed offline methods, find only hyper-elliptical
clusters, require prior knowledge of the number of clusters or their density. In real-life ap-
plications, such hypothesis is quite unrealistic, clusters are more likely of irregular shapes
and the number of clusters keeps changing over time and cannot be fixed in advance. Cluste-
ring based on the regular-shaped class struggles when faced with data in which the existing
clusters do not conform to the allowed shape of clusters.

In this paper, we are introducing a fully online and efficient data stream clustering algorithm
using incremental Delaunay triangulation to address these issues and clusters streams of data
on the fly.

The rest of the paper is structured as follows : Section 2 surveys the current state of the art
with an exhaustive comparison of the related work. Section 3 lists a bench of definitions useful
for DeDaSC comprehension. Section 4 describes the principles and methodology behind the
DeDaSC algorithm and provides a description of its pseudo-code. Section 5 describes the
datasets and the methodology of their use throughout the analysis parts of the paper and
provides analysis of the performance of the proposed algorithm and comparisons to alternative
techniques. Finally, we conclude the paper and consider some directions for future work in
Section 6.

5.2 Related Work

Data stream clustering is motivated by emerging applications involving massive datasets
(Guha et al., 2003). An exhaustive survey of data stream clustering algorithms and relevant
applications is given in (Silva et al., 2013). It includes, for instance, bearing prognostics, forest
cover, grid computing, sensor networks, network intrusion detection, stock market analysis,
etc. When designing data stream clustering algorithms, several requirements have to be
considered and various issues need to be addressed, mainly, in terms of run-time and memory
needs. In Table 5.1, we make a list of the most significant restrictions to be considered with
this class of data. Due to the wide spectrum of application domains and model constraints,
the research in data stream clustering has gained high attraction. Below we review some of
the most important research work in the field of data stream clustering.

Broadly speaking, we can classify the related work on data stream clustering into the fol-
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Table 5.1 List of Data Stream Clustering Restrictions with their Definitions

Restriction Description

Stream order Data stream should be processed on the fly without any
order constraint

Single pass Data points are linearly scanned only once before
being discarded and random access is prohibited.

Time constraint Designing a clustering algorithm of low computational
complexity without sacrificing performance.

Memory constraint Reducing the space complexity of the clustering algorithm
and storing only a summary of incoming data.

Prerequisites No assumption or prior knowledge of the number of
clusters to be created.

Cluster shape Position and shape of micro/macro-clusters evolve oveR
time. Data are grouped on arbitrary shaped clusters.

Outliers Ability to handle outliers. In data stream random noise
appears occasionally.

Scalability Algorithm’s capacity to handle a growing amount of
incoming data.

lowing four clustering techniques, namely density-based algorithms, partitioning algorithms,
hierarchical algorithms, and grid-based algorithms. A comparison of the surveyed clustering
algorithms is summarized in Table 5.2. This comparison is based on a list of metrics discussed
in details in Section 5.3.

5.2.1 Density-based Algorithms

Density-based algorithms aim mainly on finding arbitrary shaped clusters and noise filtering
based on density. The base idea behind this technique is to keep increasing cluster cardinality
i.e. number of members as long as its local density reaches a predefined certain threshold.
Density reachability and density connectivity concepts were introduced to refine the algo-
rithm’s process. In the context of density-based algorithms, clusters are dense regions (i.e.
maximal set of density connected data points), separated by regions of lower density. A se-
ries of density-based algorithms have been developed in literature. Hereafter, we give a brief
overview of these algorithms ; DBSCAN (Density Based Spatial Clustering of Applications
with Noise) has been proposed by Martin Ester, Hanz-Peter Kriegel’s group in (Ester et al.,
1996). DBSCAN is considered as the prototypical density-based clustering approach and the
most used one. DBSCAN aims at estimating the density surrounding each data point by
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Table 5.2 A Comparative Study of Data Stream Clustering Algorithms
Clustering
technique

Single pass
requirement

Shape of
the clusters

A-priori knowledge of
the number of clusters

Outlier’s
handling

Variable
density

Algorithm’s
time complexity

DBSCAN Density-based 7 Arbitrary 7 3 7 O(n log n)

Incremental DBSCAN Density-based 3 Arbitrary 7 3 7 O(n) +O(n log n)

OPTICS Density-based 7 Arbitrary 7 3 7 O(n log n)

DENCLUE Density-based 7 Arbitrary 7 3 7 O(n log n)

Sequential K-means Partitioning 3 Hyper-Spherical Required 7 7 O(ndk+1)

CLARANS Partitioning 7 Hyper-Spherical Required 3 7 O(n2)

STING Grid-based 3† Arbitrary 7 3† 3 O(c)

Wave Cluster Grid-based 7 Arbitrary No ‡ 3 3 O(c)

CURE Hierarchical 3 Non-spherical 7 3 7 O(n2 log n)

CHAMELEON Hierarchical 7 Arbitrary Required 7 3 O(nk + n log n+ k2 log k)

BIRCH Hierarchical 7 Hyper-Spherical Required 3 3 O(n)

DeDaSC (Our algorithm) Density-based 3 Arbitrary 7 3 3 d ≤ 3⇒ O(n) +O(n1/2)
d ≥ 4⇒ O(n) +O(n)

† Partial solution.
‡ Useful if specified.
n Number of data samples.
d Number of data dimensions.
k Number of clusters.
c Number of grid cells.

counting the number of members in a predefined eps neighborhood compared to a certain
threshold to identify core region and outliers. Later, core samples join clusters if they are
density-reachable and border points are assigned to clusters. In (Ester et al., 1998), authors
proposed an incremental version of DBSCAN allowing gradual modifications of the data-
set. After each iteration micro-cluster connections are created and broken according to the
changes. The main disadvantage of this incremental version is that the whole dataset is re-
quired to be available for each iteration or update. Another well-known algorithm is OPTICS
(Ankerst et al., 1999) (Ordering Points To Identify the Clustering Structure). The base idea
behind OPTICS is similar to DBSCAN while tackling one of the most important limitations
of DBSCAN consisting of the way meaningful clusters with varying density are detected. In
(Hinneburg et al., 1998), authors proposed DENCLUE (DENsity-based CLUstEring) which is
one of the most effective unsupervised clustering algorithms allowing the classification of vo-
luminous data. DENCLUE is based on the concept of density closeness and the hill-climbing
algorithm.

5.2.2 Partitioning Algorithms

Partitioning algorithms (a.k.a. iterative relocation algorithms) categorize the data samples
into a pre-defined fixed number k of clusters. These algorithms aim at optimizing a given
criterion by iteratively relocating data points by moving them from one cluster to another.
The clustering is based on the following conditions : (1) each cluster contains at least one
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data point and (2) each data point belongs to only one cluster. To improve the partitioning,
it uses an iterative relocation procedure which moves objects from one group to another. A
common measure of partitioning quality is the degree of similarity (e.g. Squared Euclidean
distance, Mahalanobis distance, Minkowski distance) between data samples belonging to the
same cluster, as data samples of different clusters. The main drawback of such simple tech-
nique is that it is unsuitable for discovering complex arbitrary shaped clusters of voluminous
datasets. An incremental version of k-means was proposed in (Macqueen, 1967). This se-
quential version was adapted for streaming data and generated hyper-spherical clusters. This
algorithm adds cluster centroids gradually as clusters are being formed. In (Ng and Han,
1994), authors proposed CLARANS which is an efficient medoid-based clustering algorithms
based on randomized search. CLARANS draw samples of neighbours dynamically. The clus-
tering process searches on the graph where every node is a potential solution, that is, a set of
k-medoids. Generally, partitioning algorithms are time consuming and cannot be effectively
applied to the voluminous datasets.

5.2.3 Hierarchical Algorithms

Hierarchical algorithms are based on constructing a hierarchy of clusters (a.k.a. dendrogram)
which iteratively divides the dataset into smaller subsets until each subset contains single
data sample. This technique involves creating clusters that have a predetermined ordering
from top to bottom. In this hierarchy, each node of the tree represents a group of similar data.
The cluster hierarchy can be formed from the leaves to the root in an agglomerative approach
or the opposite in divisive approach (Murtagh, 1983). The merge or split process should be
stopped whenever the pre-defined stopping criterion is met. Among these algorithms we cite
CURE (Clustering Using Representatives) (Guha et al., 1998) which is designed to handle
large datasets, that is more robust to outliers and identify clusters having non-spherical
shapes. To do this, CURE employs a mixture of random sampling and partitioning. In (Ka-
rypis et al., 1999) authors proposed CHAMELEON that measures the degree of similarity
between two clusters is based on a dynamic model. To group data samples, CHAMELEON
aims on maximizing the intra-cluster similarity and minimizes the inter-cluster one. CHA-
MELEON is applicable to all types of data as long as a similarity matrix can be constructed
and requires the prior knowledge of the number of clusters to be created. In (Zhang et al.,
1996) authors proposed BIRCH which is an unsupervised data mining algorithm that has
been applied for data stream mining. BIRCH introduced the use of micro-clustering and
macro-clustering. It scans the database to build an in-memory tree before applying cluste-
ring algorithms to cluster the leaf nodes. A major limitation of hierarchical algorithms is that
as soon as two data points are grouped together, they cannot move to other groups in the
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tree. Thus, migration is prohibited between the clusters.

5.2.4 Grid-based Algorithms

Grid-based algorithms explore multi-resolution grid data structure in clustering. They subdi-
vide the data space into a limited number of cells to form a grid structure. This partitioning
of the data space is based on the prior knowledge of data granularity. It allows the detection
of dense regions from the cells in the grid. The main advantage of this method is its scalability
given that grid-based algorithms are typically independent of the number of data objects, yet
dependent on only the number of cells in each dimension in the quantized space. Wang et
al. proposed a STING (STatistical INformation Grid-based method) for spatial data mining
(Wang et al., 1997) in the grid structure. The quality of the resulting clustering depends on
the granularity of the lowest level of the grid structure. Finer granularity of the grid cells
leads to higher quality of the obtained clustering and the cost of processing will increase
substantially. Another well-known grid-based clustering approach is WaveCluster (Sheikho-
leslami et al., 1998). The WaveCluster method is not sensitive to the order of the number of
input data samples to be processed. WaveCluster uses a wavelet transformation to transform
the original feature space. WaveCluster is well capable of finding arbitrary shape clusters.

5.3 Basic definitions of DeDaSC

Before detailing the DeDaSC process, we start by introducing a set of definitions. A summary
of the used notations is given in Table 5.3.

Table 5.3 List of DeDaSC Notations with their Definitions

Symbole Description
p Data point received at instant t
n Number of micro-clusters at instant t
ηi Micro-cluster id
µi Maturity index of micro-cluster ηi
µth Maturity threshold of micro-cluster ηi
Ci(t) Centroid co-ordinates of micro-cluster ηi at instant t
φ Magnetic attraction distance
ζj Macro-cluster id
DT (n, t) Delaunay triangulation of micro-cluster centroids at instant t

Definition 5.3.1 Micro-cluster
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A Micro-cluster at time t is defined as ηi where 1 ≤ i ≤ n for a set of data points residents
within a user defined neighborhood area. n represents the number of micro-clusters at time
t. Associated with each micro-cluster, we create a unique id whenever it is first created. The
neighborhood is defined by the Euclidean distance between the centre of the freshly updated
micro-cluster and the data points in that micro-cluster.

Definition 5.3.2 Maturity Index

A micro-cluster’s maturity index µi represents the number of data points belonging to the
micro-cluster ηi. For each micro-cluster at time t, we consider a maturity index that keeps
increasing over time. The initial value for each micro-cluster is 1. This index portrays the
well-known density metric used in density-based algorithms.

Definition 5.3.3 Maturity Threshold

The maturity threshold µth defines the upper bound of micro-cluster’s maturity index to pass
from an outlier to a potential micro-cluster that can be considered in the final phase of macro-
clustering.

Definition 5.3.4 Micro-cluster Centroid

The most representative point within each micro-cluster ηi is the centroid Ci(t) at time t which
is used as a measure of cluster location. This is the arithmetic mean ("average") position of
all the data points in the micro-cluster. The similarity of two micro-clusters is defined as the
similarity of their centroids. The centroid keeps changing its position every time a new data
point p joins the micro-cluster ηi.

Ci(t) = µi × Ci(t− 1) + p

µi + 1 (5.1)

Definition 5.3.5 Magnetic Attraction Distance

The degree of similarity between streaming data points is defined with the use of a distance
measure that we denoted magnetic attraction distance φ. This parameter is used to identify
dense neighborhoods and represents the maximal distance from any point in the micro-cluster
to the centroid and decide whether the incoming data sample falls in the micro-cluster region
or not.

Definition 5.3.6 Outlier Micro-cluster
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An outlier micro-cluster at time t for a group of close points is a micro-cluster that hasn’t rea-
ched yet its maturity threshold (a.k.a. sparse region or empty region). Outlier micro-clusters
cannot be considered in the macro-clustering process.

∀i ∈ [1..n], if µi < µth → ηi is an outlier micro-cluster (5.2)

Definition 5.3.7 Mature Micro-cluster

A mature micro-cluster at time t for a group of close points is a micro-cluster with a number
of data points (i.e. members) greater or equal to the maturity threshold (a.k.a. dense region).
Only mature micro-clusters are considered in the macro-clustering process.

∀i ∈ [1..n], if µi ≥ µth → ηi is a mature micro-cluster (5.3)

Definition 5.3.8 Macro-cluster

Each mature micro-cluster ηi joins a given macro-cluster ζj where j ∈ [1..m] and m represents
the number of the macro-clusters at time t. The macro-clustering phase discussed at a later
stage will use this micro-clusters membership in order to create the final arbitrary shaped
clusters.

∀i ∈ [1..n] if µi ≥ µth ∃j ∈ [1..m] / ηi ⊂ ζj (5.4)

Definition 5.3.9 Delaunay Triangulation

A Delaunay triangulation for a set n of points in a plane P ∈ <2 at time t is a triangulation
DT (n, t) such that no point is inside the circumcircle of any triangle in DT (n, t). By conside-
ring circumscribed spheres, the notion of Delaunay triangulation extends to three and higher
dimensions. The triangulation vertices of DT (n, t) represent the micro-cluster centroids.

5.4 Proposed Algorithm : DeDaSC

While considering the aforementioned restrictions and in comparison with the methods dis-
cussed above, we propose DeDaSC, a novel data stream clustering algorithm. Our clustering
algorithm addresses all these considerations and can be divided into three parts that are
detailed in below : (1) neighborhood discovering using incremental Delaunay triangulation
(2) online micro-clustering, and (3) macro-cluster construction.
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5.4.1 Neighborhood Discovering Using Incremental Delaunay Triangulation

One of the main issues faced on data stream clustering is the ability to, rapidly and effectively,
discover the neighboring micro-clusters of the freshly received data point. One trivial and
widely adopted technique consists of computing the Euclidean distance to all the micro-
cluster centroids to find the nearest neighbour (i.e. micro-cluster). The decision of joining
this micro-cluster or not will be taken based on the difference between the aforementioned
distance and the magnetic attraction distance. In this context, our aim is to propose a fully
online spatial proximity method with reduced timing cost (i.e. time complexity). After this
operation and based on its output, the algorithm groups data points with similar attributes
together to be part of the same cluster. In this paper, we utilize the Delaunay triangulation
for neighborhood discovering of a given data point p.

In trigonometry, a triangulation of a discrete set of points P ∈ <d, subdivides data points
into triangles, and by extension the subdivision of a higher-dimension geometric object into
simplices (i.e. generalization of the notion of a triangle or tetrahedron to arbitrary dimensions)
(Jick, 1979). This operation allows the determination of the location of a point by connecting
it with triangles to known points. Frequently used and studied point set triangulation include
the Delaunay triangulation.

A Delaunay triangulation is a particular way of joining a set of points to make a triangular
mesh (De Loera et al., 2010; Guibas et al., 1992; De Berg et al., 2008). Delaunay triangulation
tends to avoid skinny triangles (i.e. a triangle whose height is much greater than its base), as
depicted in Figure 5.2. Delaunay triangulation is a fundamental geometric construction that
has been applied in numerous applications in different domains. A Delaunay triangulation
of a given dataset in a d-dimensional Euclidean space is a triangulation such that no point
is inside the circum-hypersphere of any simplex in the triangulation. A circle circumscribing
any Delaunay triangle does not contain any other input points in its interior. The problem
of finding the Delaunay triangulation is equivalent to the problem of finding the convex hull
of the same dataset in (d+ 1)-dimensional space. Given that the convex hull is unique, so is
the triangulation, assuming all facets of the convex hull are simplices.

The pseudo-code of the incremental Delaunay triangulation is given in Algorithm 1. Figure
5.1 gives the steps performed by incremental Delaunay triangulation when a new data point
p joins the dataset.

This algorithm was originally presented in (Green and Sibson, 1978), its pseudo-code in
(Guibas and Stolfi, 1985) and the detailed implementation in (Lischinski, 1994). It consists
of two parts :
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Algorithm 1: Incremental Delaunay triangulation
Result: Updated Delaunay triangulation

1 Locate the triangle T containing the new data point p;
2 Create edges connecting p to the vertices of the containing triangle T ;
3 Verify the empty circumcircle condition by inspecting the new edges;
4 while Candidate edges remain uninspected do
5 if condition satisfied then
6 The old edges remain unchanged;
7 else
8 Flip the offending edge and replace it by the other diagonal of the surrounding

quadrilateral;
9 end

10 end

1. Locate the triangle T containing the freshly received data point p.

2. Insert the new sample into the current triangulation and link it to the vertices of
the containing triangle by creating new edges before making a list of modifications. In
Figure 5.1, a summary of the scenario of updating the Delaunay triangulation is given.
After locating the data sample, the edges of the containing triangle are inspected. If
the circumcircle condition remains satisfied, the edges are unchanged otherwise the
other diagonal of the quadrilateral takes place. The process is iteratively repeated
until all the triangles satisfy the circumcircle condition and we obtain the updated
Delaunay triangulation.

According to (Lischinski, 1994), if the inserted points are uniformly distributed, the expected
number of operations to locate a point is O(n1/2). Therefore, finding the nearest neighbour
will require only 3 comparisons to be performed with the vertices of the container triangle T
which means a total computational complexity of O(n1/2). In practice, the average number of
edges to be tested does not exceed 9 operations. Thus, the expected time complexity falls to
a constant time per each insertion. Based on these timing costs the overall time complexity
of the incremental Delaunay triangulation for neighborhood discovering is O(n1/2).

Without loss of generality and for the sake of clarity, we consider only bi-dimentional spaces
for the remainder of the paper. An example of Delaunay triangulation is depicted in Figure
5.2. This figure clearly shows the capacity of this technique in terms of neighborhood discovery
by comparing the dense regions to those in between.

The incremental Delaunay triangulation can be seen as a sub-step of the micro-clustering
process which is detailed later. It aims on adding new points to the current triangulation and
makes the necessary changes to maintain the invariant that the triangulation is Delaunay.
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Figure 5.1 Inserting a new point in the triangulation. Dashed lines indicate edged that needs
to be inspected by the algorithm (Lischinski, 1994).
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Figure 5.2 Delaunay triangulation of a dataset containing arbitrary shaped clusters. Dense
regions or possible clusters involve smaller triangles compared to empty regions containing
only outliers.

The Delaunay triangulation expresses the degree of proximity between micro-clusters. Each
vertex in the Delaunay triangulation represents a micro-cluster centroid. It is performed
after updating the micro-cluster data structure either with the new centroid or the recently
adjusted one. For the rest of the paper, we consider χ1 as the function modeling the event
that a new micro-cluster has been created and χ2 as the event that the data p joined an
existing micro-cluster.

Keeping in mind, simultaneously, the single pass and timing constraints, an incremental
implementation of Delaunay triangulation we propose. This incremental algorithm allows the
incoming data point p at time t to update the Delaunay triangulation at time t− 1 denoted
DT (nt−1, t− 1) one by one as they come. nt represents the number of existing micro-clusters
at time t. If the new data point p falls in an empty region, a new micro-cluster is created
and the incremental Delaunay triangulation is performed by adding p to DT (nt−1, t − 1).
Otherwise, the new data point p joins an existing micro-cluster, the Delaunay triangulation
DT (nt−1, t − 1) will be updated after shifting the centroid of the freshly modified micro-
cluster. The resulting Delaunay triangulation will be denoted by DT (nt, t) where :

nt = nt−1 + 1 if χ1 = 1 and nt = nt−1 if χ2 = 1 (5.5)
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5.4.2 Online Micro-Clustering

Since data streams are continuously generated, DeDaSC efficiently compresses the incoming
data in a set of micro-clusters. These micro-clusters are referred to as snapshots of data
groups that keep changing and growing over time as new data points join the list. Therefore,
DeDaSC provides a compact representation of the clusters compressing all the data points
previously processed at time t. This crucial phase requires a very efficient process to save
an appropriate summary of streaming data. The pseudo-code of the micro-clustering stage is
given in Algorithm 2. The online micro-clustering summarizes the flow of incoming streams
of data in reduced data structures containing its metadata (i.e. centroid location, maturity
index, etc). In Figure 5.3 data points are coloured in black and the micro-cluster centroids
in red. As depicted in Figure 5.3(b) only the red points representing the centroids reside in
memory.

(a) Snapshot of data points (b) Snapshot of micro-cluster cen-
troids stored in memory

Figure 5.3 An image of streaming data and the created micro-clusters. Data points are colored
in black and the micro-cluster centroids in red. The red points only reside in memory.

In order to achieve this micro-clustering goal, DeDaSC goes through a list of iterations.

5.4.2.1 Initialization

We first need to initially create three micro-clusters at the beginning of the data stream
processing. This initialization process will allow the construction of the first triangle of the
Delaunay triangulation. For this purpose, the first three points are stored on primary me-
mory as three different micro-clusters regardless their spatial proximity as depicted in Figure
5.4.a. Once these initial three micro-clusters have been created, the online process of micro-
clustering is initiated. In the same Figure we show a new data point depicted with a diamond
marker falling in the space and launching the execution of the next phase of DeDaSC.
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Figure 5.4 DeDaSC Algorithm : an illustrative example. In this example we assume that the
maturity threshold is equal to 3.

5.4.2.2 Micro-cluster Assignment

Whenever a new data point is linearly scanned, the micro-clusters are updated in order to
reflect the adjustments. Each data point either needs to be put in a new micro-cluster of
its own (i.e. χ1 = 1), or needs to be absorbed by a pre-existing micro-cluster (i.e. χ2 = 1).
To make such substantial decision with limited timing cost, we first refer to the most recent
image of the Delaunay triangulation at timeDT (nt−1, t−1). This original version of Delaunay
triangulation allows us to easily find the nearest micro-cluster to the incoming data sample
p at time t and the distance between them.

— Micro-cluster Birth
In many cases, the data point p may not be sufficiently close to this micro-cluster
which means that the distance is greater than the predefined magnetic attraction dis-
tance. Figure 5.4.b illustrates an example of this situation where p should be placed
in a new outlier micro-cluster of its own. This new micro-cluster contains only the
new data point pi and a new id is assigned to this micro-cluster. This id identifies
the micro-cluster uniquely at any future stage of the data steam process. The micro-
cluster centroid is the data sample location itself and the maturity index is initialized
to 1. This may happen because of the arrival of an outlier point, or because of sud-
den changes in the data stream itself. A sudden change may lead to a new trend in
the data stream which often exhibits itself in the form of a new micro-cluster. Once
the new micro-cluster is created, the insertion process of the incremental Delaunay
triangulation is launched with the new centroid.

— Micro-cluster Growth
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If the data point p falls in a populated region (i.e. within the magnetic attraction
field of the nearest micro-cluster) than the incoming data point p is absorbed by this
micro-cluster. The centroid of the absorber (i.e. nearest micro-clusters) is updated,
the maturity index is incremented. In Figure 5.4.b, we notice that the new data point
p falls in the attraction field of the outlier micro-cluster η3. Since, we are assuming
that µth = 3, η3 becomes a mature micro-cluster when it absorbs a new data point
as depicted in Figure 5.4.c. From that moment, we see in Figure 5.4.d that η3 will
be considered in any macro-clustering process whenever it overlaps with other mature
micro-clusters. The same process happens to η1 and η4 as shown in Figures 5.4.d and
5.4.e consecutively. After each data point absorption, the Delaunay triangulation is
updated by considering the new location of the corresponding micro-cluster centroid.

Algorithm 2: Online micro-clustering pseudo-code
Result: Updated micro-clusters and Delaunay triangulation

1 p = Load the new streaming data point;
2 ti = Find triangle containing pi from the Delaunay triangulation at DT (t− 1);
3 ηpi

= nearest neighbour (micro-cluster centroid);
4 dist(pi, ηpi

) = Compute Euclidean distance between pi and ηpi
;

5 if dist(pi, ηpi
) < φ then

6 Add pi to this micro-cluster ηpi
;

7 Update micro-cluster’s centroid;
8 Increment micro-cluster’s maturity index;
9 Update Delaunay triangulation after shifting the micro-cluster centre;

10 else
11 Create new micro-cluster;
12 Define micro-cluster’s centroid;
13 Initialize micro-cluster’s maturity index to 1;
14 Apply incremental Delaunay triangulation with the new micro-cluster;
15 end

5.4.3 Macro-Cluster Creation

The micro-clusters created, at this stage, serve as an intermediate statistical representation
which can be maintained in an efficient way even for a data stream of large volume. The
macro-clustering stage will not be performed for all the data points of the original stream of
data. It will utilize the compactly stored micro-clusters (more accurately the mature micro-
clusters). Therefore, it is not constrained by one-pass requirements. It is assumed that as input
to the algorithm, the user supplies macro-cluster attraction distance to merge overlapped
micro-clusters. If chosen appropriately, the magnetic attraction distance can make the tuning
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of the macro-cluster attraction distance pseudo-automatic. Macro-clustering is a kind of a
re-clustering process introducing a new scale at which any mature micro-cluster that will be
within the macro-cluster attraction distance of the freshly updated micro-cluster will revise
its membership to be the same.

The macro-clustering is not performed with every streaming data point. It will wait the
updated micro-cluster to achieve the maturity threshold and then it can be launched. In
Figure 5.4, we can easily notice that the re-clustering has been performed only once. It has
been launched only when two mature micro-clusters overlapped as depicted in Figure 5.4.f.
Hereafter we detail the process which leads to launching the macro-clustering process. As
highlighted before, in Figure 5.4.e three data points join the outlier micro-cluster η4 and
its maturity index is incremented three times. Thus, η4 becomes a mature micro-cluster
(µ4 > µth). This means that η4 is mature enough to be considered for the re-clustering phase.
To do this, we refer to the macro-cluster magnetic attraction distance. This second parameter
will allow us to find the list of overlapped micro-clusters within the macro-cluster magnetic
attraction field but currently belonging to another macro-cluster which is the case for η3.
Overlapped clusters gets re-clustered as part of an updated micro-cluster’s macro-cluster
that we denote ζ4. Macro-cluster id always takes the index of the micro-cluster launching the
macro-clustering process.

By applying the aforementioned process, every incoming data sample is instantly clustered
and outliers are easily identified. Such approach maintains arbitrary shaped data space re-
gions of global clusters online. If the micro-cluster is still young a.k.a. outlier micro-cluster
where µi < µth, then the macro-clustering will not be performed and DeDaSC passes to
standby state waiting for a new data point to be processed.

5.4.4 DeDaSC complexity

The key to the success of the data stream algorithm is high scalability of the micro-clustering
algorithm. This is because this process is exposed to a potentially large volume of incoming
data and needs to be implemented in an efficient and online fashion. In this section we examine
the time complexity of DeDaSC according to the size of the data stream (i.e. number of data
points). For this purpose, we use the parameter n to represent the number of micro-clusters
seen so far.

To assess the time complexity of our algorithm, we focus on the redundant iterations that
will be performed every time a new data point is received and we limit our implementa-
tion to bi-dimensional and tri-dimensional streaming data sets. Therefore, we studied the
neighborhood discovering using incremental Delaunay triangulation and, implicitly, the on-
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line micro-clustering, from one side, and the re-clustering from the other side. As mentioned
before, incremental Delaunay triangulation is based on two main steps :

1. Finding the container triangle location and inserting the new data point to the trian-
gulation. This process requires O(n1/2) time to be achieved.

2. After the assignment of the newly incoming data point to a given micro-cluster, we
compute the distances between the new or updated micro-cluster centroid and all
other micro-cluster centroid with a complexity of O(n).

The resulting complexity is therefore O(n) + O(n1/2). This low complexity results in an
algorithm that is not only fast, but has a low time penalty for increasing volumes of data.

In this context, it is worth mentioning that while this incremental Delaunay triangulation
algorithm can be generalized to more than three dimensions, the execution time can be
exponential and its convergence is not guaranteed in some cases. Thus, whenever the data
set dimension is higher than three dimensions, DeDaSC switches to the euclidean distance
mode. We use the euclidean distance to find the nearest micro-cluster to the freshly received
data point. In such situation, DeDaSC reaches higher complexity equal to O(n) + O(n).
Therefore, even with higher dimensions DeDaSC still perform in a fast fashion.

5.5 Experimental Evaluation

In this section, we provide a performance evaluation and a detailed discussion of our algorithm
DeDaSC across a range of experiments. A thorough experimental study was conducted for
the clustering quality, processing speed, memory efficiency, scalability, and sensitivity of the
algorithm here proposed. We utilized synthetic datasets proposed in (Karypis et al., 1999) and
commonly exploited by the data stream clustering research community. The three synthetic
2-dimensional datasets in a data streaming context termed as DS1, DS2 and DS3, are depicted
in Figures 5.5(a), 5.5(b) and 5.5(c). Each of them contains thousands of data points.

— DS1 contains arbitrary shaped clusters, orientation and contains noise points as well
as special artifacts such as streaks running across clusters.

— DS2 has the specificity of involving clusters inside the space enclosed by other ones.
— DS3 has clusters which are very close to each other with different densities. These

clusters have non-convex shapes and some are interwoven.

5.5.1 Sensitivity maturity threshold

As we explained in Section 5.4, clustering using DeDaSC is controlled by a small set of
parameters. One of the most important parameters impacting the quality of the obtained
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Figure 5.5 The three data sets used in our experiments
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(a) Clustered data using maturity index
equal to 3
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(b) Clustered data using maturity index
equal to 4
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(c) Clustered data using maturity index
equal to 5
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(d) Clustered data using maturity index
equal to 10

Figure 5.6 Sensitivity of the clustering purity to the micro-clusters maturity threshold µth on
the dataset DS1

clusters is the micro-cluster maturity threshold denoted µth. In this section, we evaluate
how this parameter affects the quality of the clustering, considering different levels of upper
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Figure 5.7 Impact of varying the maturity index on the memory usage of DeDaSC i.e. number
of created micro-clusters

bound. In these experiments, we started by defining the parameter boundaries that we set
to 2 and 10. For ease of comparison and reading, plots were limited to the values 3, 4, 5
and 10. Figure 5.6 shows a summary of the obtained results. When µth is set to a relatively
small or high value, DeDaSC leads to very poor results. For example, when µth = 2, only
one macro-cluster is obtained and DeDaSC failed to discover the various clusters. When
µth = 3, new clusters start appearing, however, interwoven clusters fail to be separated. In
figure 5.6(b), where µth is set to 4 the clustering quality is widely better than all the other
possible values within the boundaries. Not only will the clustering quality be affected by the
choice of the maturity index but also the memory usage and run-time. Figure 5.7 shows the
impact of varying µth with regards to the number of generated micro-clusters. Figure reports
the number of micro-clusters created by DeDaSC during its execution. The most important
result showed by Figure 5.7, however, is that, the higher the level of maturity threshold,
the worse DeDaSC performs with respect to the other values. We intentionally omitted the
performance of DeDaSC with µth = 10 because, being too big, did not offer any interesting
insight. The form of the other plots shows that DeDaSC converges and covers the whole space
in such a way that any falling new data point will have higher chances to join an existing
micro-cluster than to create its own.

5.5.2 Clustering quality evaluation

The sequence order of streaming data have a considerable effect on the clustering purity. To
efficiently evaluate the quality of DeDaSC output, we generate the data sequentially at each
time step. The data flow generation is performed in a random fashion. At each time, any
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DS3 with noise
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(j) DS1 data points pla-
ced into macro-clusters
with µ = 4
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ced into macro-clusters
with µ = 2

Figure 5.8 The three datasets used in our experiments (DS1, DS2, DS3) and their resul-
ting Delaunay triangulation. In addition we give the generated micro-clusters coloured by
their macro-cluster’s membership. At the end we give the snapshot of data stream resulting
clustering. Some data points inside the macro-clusters still unclustered since they belong to
non-mature micro-clusters.

data point that has not been selected is equally likely to be picked as the new data record.
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The final clustering results obtained by DeDaSC are shown in Figures 5.8(j), 5.8(k) and
5.8(l). The data points belonging to different clusters are marked by different colors. From
these Figures, we can easily notice that DeDaSC can correctly discover the genuine clusters
without users supply on the number of clusters in all three datasets DS1, DS2 and DS3
or a fixed pre-defined density index. Therefore, we can conclude that as this experiment
illustrate DeDaSC is very effective in finding various clusters of arbitrary shape, density, and
orientation, and is tolerant to outlier points, as well as artifacts such as streaks running across
clusters. In Figures 5.8(g), 5.8(h) and 5.8(i), we show that the overlapped micro-clusters will
be grouped together. In this context, it is worth to mention that only this information will
be accessible during run-time. The original data once scanned it will be discarded and only
the micro-clusters are updated.

5.5.3 Processing Time

The key factor to the efficiency of DeDaSC is the rapid processing time of the micro-clustering
creation process. The micro-clustering is exposed to a voluminous steaming data. The most
time-consuming operation during this stage is that of finding the nearest micro-cluster for
each freshly received data point. The use of the incremental Delaunay triangulation fixes the
problem of spatial proximity among an irregularly distributed spatial datasets and rapidly
finds the nearest micro-cluster. In this context, by rapidly, we mean in a square root time
complexity time with the number of micro-clusters.

In Figure 5.9, we show the processing time of each data point of the streaming data. The
vertical lines represent the relative start and stop times at which each data point was pro-
cessed. Longer lines identify samples that took longer to process. At the beginning, DeDaSC
requires relatively higher execution time to construct the initial set of micro-clusters. During
this transient phase, incoming data points fall in empty regions and each operation leads to
the creation of a new micro-cluster. However, once DeDaSC reaches convergence, the clus-
tering process becomes faster. This convergence can be explained by the fact that new data
points will have higher chances to be absorbed by an existing micro-cluster. At this advanced
stage, DeDaSC covers appropriately the space.

5.5.4 Memory Usage

Data stream clustering algorithms are required to have a relatively small memory usage.
Even a linear growth of memory consumption is not accepted. In order to evaluate the
memory usage of DeDaSC compared to the incremental building (used in the context of
widowed or online/offline clustering algorithms) and the whole dataset (used in the context
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Figure 5.9 Evolution of the processing time of DeDaSC with every incoming data point over
time
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Figure 5.10 Evolution of the memory usage of DeDaSC with every incoming data sample
over time compared to the whole and incremental building of the studied datasets.

of conventional or offline clustering algorithms). In our implementation, DeDaSC maintains
an up-to-date micro-cluster model containing useful metadata (centroid location, maturity
index, etc.). The memory usage is measured in terms of the number of saved micro-clusters.
Figure 5.10 shows that the memory usage of DeDaSC is limited and bounded as the streams
proceed. This upper bound is reached when DeDaSC achieves the steady state and the space
is fully covered.

5.5.5 Clustering Results Comparison

We evaluated the performance of DeDaSC against CURE and DBSCAN as two samples of the
current online clustering algorithms. The obtained clusters of DS1, DS2 and DS3 using these
two algorithms were given in (Karypis et al., 1999). The experiments with CURE algorithms
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were conducted with a shrinking factor 1 equal to 0.3 and the number of representative points
is 10. In figures 5.11(a), 5.11(b) and 5.11(c), we can easily notice that CURE failed to
discover the right clusters with arbitrary shapes. This erroneous result is due to the fact
that CURE makes errors when merging sub-clusters by ignoring their density and focusing
only on their proximity. On the other hand, DBSCAN which is considered as the best known
and most used density-based clustering algorithms capable of discovering arbitrary shaped
clusters. DBSCAN succeeded in finding the right clusters for datasets DS1 and DS3. However,
DBSCAN failed with DS2 as this dataset contains clusters with variable internal density.

(a) CURE on DS1 (b) CURE on DS2

(c) CURE on DS3 (d) DBSCAN on DS2

Figure 5.11 CURE on the DS1, DS2, DS3 datasets with shrinking factor 0.3 and number
of representative points 10. DBSCAN on the DS2 dataset with Eps parameter equal to 5.9
(Karypis et al., 1999).

1. A factor allowing the shrinking of the scattered points within the cluster toward the mean of the cluster.
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5.6 Conclusion

The Internet of Things concept arises from the need to manage, automate, and explore all
devices, instruments, and sensors in the world. In order to make wise decisions both for people
and for the things in IoT, data mining technologies are integrated with IoT technologies
for decision-making support and system optimization. Data stream clustering allows the
discovering of the novel, interesting, and potentially useful patterns from data and applying
algorithms to the extraction of hidden information. In this paper, we have developed an
effective and efficient method that we called it Delaunay triangulation-based Data Stream
Clustering algorithm (DeDaSC) for clustering voluminous evolving data streams. This is an
incremental, one-pass density-based algorithm, which is able to construct arbitrary shaped in
real time with considerable optimization of time and space. DeDaSC has intuitive advantages
over traditional techniques which try to cluster the whole dataset at one time rather than
processing the data stream evolving over time. We evaluate DeDaSC against state-of-the-
art stream clustering algorithms on synthetic data streams. We show DeDaSC capabilities
when it comes to fuse micro-cluster to create arbitrary shaped clusters as they evolve in
a fully online manner. The study validates the following claims : DeDaSC derives higher
quality clusters than traditional stream clustering algorithms, especially when the cluster
distribution contains dramatic changes ; DeDaSC proves its capabilities in terms of timing
and memory efficiency ; DeDaSC has very good scalability in terms of data stream size, and
the number of clusters.
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CHAPTER 6 ARTICLE 2 : MULTI-OBJECTIVE MAPPING OF
FULL-MISSION SIMULATORS ON HETEROGENEOUS DISTRIBUTED

MULTI-PROCESSOR SYSTEMS

Rabeh Ayari, Imane Hafnaoui, Alexandra Aguiar, Patricia Gilbert, Michel Galibois, Jean
Pierre Rousseau, Giovanni Beltrame, Gabriela Nicolescu
Published to Journal of Defence Modeling and Simulation

Abstract : Full-Mission Simulators (FMS) are considered as the most critical simulation
tool belonging to the flight simulators family. FMSs include a faithful reproduction of figh-
ter aircraft. They are used by armed forces for design, training and investigation purposes.
Due to the criticality of its timing constraints and the high computation cost of the whole
simulation, FMSs need to run in a high-performance computing systems. Heterogeneous dis-
tributed systems are among the leading computing platforms and can guarantee a significant
increase in performance by providing a large number of parallel powerful execution resources.
One of the most persisting challenges raised by these platforms is the difficulty to find an
optimal mapping of n tasks on m processing elements. The mapping problem is conside-
red as a variant of the quadratic assignment problem, in which exhaustive search cannot be
performed. The mapping problem is an NP-hard problem and solving it requires the use of
meta-heuristics and it becomes more challenging when one has to optimize more than one
objective with respect to the timing constraints. Multi-objective evolutionary algorithm have
proven their efficiency when tackling this problem. Most of the existent works deal with the
task mapping by considering either a single objective or homogeneous architectures. There-
fore, the main contribution of this paper is a framework based on the model-driven design
paradigm allowing us to map a set of intercommunicating real-time tasks making up the
FMS model on the heterogeneous distributed multi-processor system model. We propose a
multi-objective approach based on the well-known optimization algorithm Non-dominated
Sorting Genetic Algorithm-II satisfying the tight timing constraints of the simulation and
minimizing makespan, communication cost and memory consumption simultaneously.

6.1 Introduction

A Heterogeneous Distributed Multi-processor System (hereafter named "HDMS") is a com-
plex yet powerful architecture that refers to a collection of autonomous interconnected multi-
processor machines with various capabilities (Khokhar et al, 1993). This type of architecture
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was developed to meet the high computation and timing requirements of real-time systems
and have been widely used in industry, covering different domains such as aerospace, auto-
motive and avionics. One of the most critical systems that needs to be executed on large
distributed computing systems are Full-Mission Simulators. An FMS is a complex simulator
allowing the crew to practice regular flight operations, fire weapons and familiarize themselves
with the cockpit in normal and extreme situations by faithfully reproducing the aircraft and
the mission environment in which it will operate. Moreover, many FMSs are able to commu-
nicate between each other in the distributed mission operation. The simulation provides an
environment allowing military forces to train as they fight. For further details regarding the
FMSs, please refer to section 2.

Exploiting the full potential of HDMS for improving FMSs performance is a current challenge
in aerospace and defense fields. The FMS software is contributed to by different teams with
different specific backgrounds (e.g. mechanic, hydraulic, electronic). Therefore, efficient FMS
execution on a HDMS requires a global view of the FMS and deep knowledge of the execution
platform. In this context, we propose a new approach for efficiently improving the FMS
performance using the HDMS. This approach is based mainly on a model-based paradigm.
Starting from FMS and HDMS models, we apply our optimization algorithm for mapping the
different real-time tasks making up the FMS on the components of the HDMS. The FMS and
the HDMS models represent the basis for collaboration between the different teams involved
in the FMS design while the optimization algorithm using as inputs the FMS and HDMS
models facilitate integration.

The problem of finding an optimal mapping of n tasks on m heterogeneous processing ele-
ments is NP-hard (Kang et al., 2011). In concrete words, if we assume that our aim is to
map an application composed of 16 tasks on a quad-core architecture, the solution space that
will be explored to find the optimal mapping schema contains 416 = 4 294 967 296 possible
solutions. Thereby, if evaluating one solution takes 0.1 second, evaluating the overall solution
space takes more than 13 years. Therefore, the solution space defined as the set of possible
mapping schemes is likely to be very large and checking whether each candidate satisfies the
problem’s constraints in addition to evaluating its fitness is unrealistic. While this exhaustive
search technique is easy to implement and always leads to the optimal solution, its cost is
prohibitive. Thus, the complexity involved in finding the optimal solution has been the main
reason to accept good or near optimal solutions i.e. trading off accuracy for a faster explora-
tion. These trade-offs have motivated the use of several meta-heuristics to tackle this issue.
Based on the "no-free-lunch-theorem" (Wolpert and Macready, 1997), previous works and
a set of experiments conducted internally, Evolutionary algorithms proved their efficiency
in solving our problem. However, this problem has not been widely studied in the case of
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HDMS compared to homogeneous systems. Taking the real-time constraints of FMSs into
consideration makes it more complex.

In this work, by analyzing existing FMSs, we extract a series of key performance metrics. The
solutions are rated according to three metrics : makespan, communication cost and memory
consumption. As these metrics might be conflicting, suitable trade-offs are considered. To the
best of our knowledge, there is no other work in the literature that addresses all the following
research axes simultaneously : heterogeneity of the target architecture, dependency among
the tasks modeling the system, the respect of tight timing constraints and multi-objective
optimization. Accordingly, the main contribution of this paper is that we are providing an
efficient framework for mapping real-time tasks implementing the FMS among the available
components of the HDMS with respect to the hard real-time constraints and minimizing at
the same time makespan, communication cost and memory consumption.

The remainder of this paper is organized as follows. In Section 6.2 we briefly review some
basic concepts. Section 6.3 discusses related work. In Section 6.4, we formally model the FMS
in the context of our problem. In Section 6.5 we detail our implementation and we illustrate
it by a set of experiments described in Section 6.6. Finally, Section 6.7 presents concluding
remarks and lists our future work.

6.2 Background information

This section provides a broad overview of the basic concepts applied in this work. Thus, the
reader who is familiar with such concepts may skip to the next section.

6.2.1 Full-Mission Simulators

In the fast growing aviation industry, military aircraft contribute substantially. Military trai-
ning rely heavily on hands-on experience with the training engines whether it be aircraft,
tanks, ships, or submarines. One could easily imagine the high cost of training new recruits
on these different devices. National Training Systems Association (NTSA) reports that for
the fiscal year of 2000, flying an F-16 fighter costs an estimated $5, 000 per hour. That aside,
the dangerous environment and difficulty of training might lead to human casualties as well
as infrastructure damages that will cost billions of dollars. To mitigate these issues, simu-
lators have long been employed in civil industry and especially military to reduce cost and
casualties. Simulators are nowadays used for training on all various types of military training
grounds such as Air Force pilots to fly fighter aircraft and Apaches, Navy officers to navi-
gate ships and submarines, etc. Even better, the trainees have easily adapted to the use of
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simulators as a training tool due to the fact that they come from a generation acquainted
with simulations such as video games and virtual reality. These simulators will reproduce the
sounds, motion, visual scenes, the representation of all the other instruments and systems
to create a realistic training environment. This eased the integration of simulators which are
extremely cost effective and provide a safe environment. In the NTSA report, training on
an Apache helicopter, the cost is estimated at $3, 101 per hour ; whereas on a simulator, the
cost plummets to $70 per hour (Kennedy, 1999). FMSs are devices that artificially re-create
aircraft flight and the external environment. These simulators are extremely complex, as they
must replicate the equations that govern aerodynamics, flight controls, weapon load-out, and
how the aircraft reacts to environmental factors such as air density, turbulence, wind shear,
precipitation, etc.

6.2.2 Real-time systems

Systems are referred to as real-time when their correct behavior depends not only on the
proper functioning of the operations they perform, but also on the time at which they are
performed by respecting the system’s deadline (Davis and Burns, 2011a). Therefore, in real-
time applications, the timing requirements are the main constraints and controlling them is
the predominant factor for assessing the quality of service (et al., 2002).

We distinguish two classes of real-time timing constraints ; hard and soft, depending on the
criticality of timing constraints. We consider a real-time system as hard when a timing faults
may cause some human or economic disaster. A real-time system is considered as soft when
timing faults cause only some performance degradation. In terms of modeling, we use the
term tasks to refer to the basic executable entities. These tasks could be periodic or aperiodic.

Regardless of the tasks’ behavior, it is important to state that some of them, once elected
for execution, may be interrupted to allocate the processor to another one. Due to such
behavior, they are called preemptive. On the other hand, when an elected task should not
be interrupted before the end of their execution, it is called non-preemptive.

6.2.3 Multi-objective optimization

Problems with more than one objective have the distinction of being much more difficult to
treat than their mono-objective equivalent. The difficulty lies in the absence of a ranking
criteria to compare solutions. A solution may be better than another on some objectives and
worse on others (Yuanlong Chen and Ma, 2012). The solutions found by a multi-objective
optimization approach have to be optimal with respect to distinct objectives, typically conflic-
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ting. It is not possible to find an optimal solution that satisfies all objectives but rather a
pool of efficient solutions characterized by the fact that their cost cannot be improved in
one dimension without being worsened in another as depicted in Figure 6.1. That is why
the concept of optimal solution becomes less relevant in multi-objective optimization. These
solutions form the Pareto optimal front referring to the economist Vilfredo Pareto (Ehrgott,
2012).

Figure 6.1 Example of a Pareto front. The gray points represent feasible choices, and pentagon
values are preferred to the gray ones. Gray points do not belong to the Pareto frontier because
it is dominated by both point A and point B. Points A and B are not strictly dominated by
any other, and hence do lie on the frontier.

Mathematically, the multi-objective optimization problem is defined as follows :

Ω = Decision Space ; Ψ = Solution Space
X = (x1, x2, ..., xn) ∈ Ω ; X is a vector of n decision variables
F = (f1, f2, ..., fm) ; m is number of objective functions

Y = F (X) = (f1(X), f2(X), ..., fm(X)) = (y1, y2, ..., ym) ∈ Ψ (6.1)

In the literature, many approaches have been developed to address this problem and could
be classified into two main categories :

Scalar or weight-based approach. Weight-Based approach consists of formulating a single-
objective optimization problem such that its optimal solutions are optimal solutions to the
multi-objective optimization problem. This technique is one of the oldest techniques in multi-
objective optimization using heuristics such as Genetic Algorithms (GAs) (Syswerda and
Palmucci, 1991), (Jakob et al., 1992), (Yang and Gen, 1994) and Simulated Annealing (Se-
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rafini, 1992). Since setting a weight vector leads to a single point, to find different solutions
with various trade-offs, the optimization process is performed with different weight vectors
which produce an extensive computational cost and the decision maker have to set the most
suitable weight combinations to reproduce a representative part of these Pareto solutions.
Furthermore, a main technical shortcoming of this approach is that the non-convex points of
the pareto front are unreachable.

Pareto approach. The Pareto approach directly uses the concepts of dominance in the solu-
tions generation. Therefore, the Pareto optimum gives more than a single solution, but rather
a set of solutions called non-dominant solutions. The main advantage of these approaches
is the simultaneous optimization of conflicting objectives. NSGA (Srinivas and Deb, 1994),
NSGA-II (Deb et al, 2002), SPEA (Zitzler and Thiele, 1999) and SPEA-II (Guliashki et al.,
2009) are among the most known multi-objective algorithms based on this technique.

6.3 Related Work

It is now more than a quarter of a century since researchers started publishing papers on
distributing computation across the execution resource of parallel architectures. This section
is a sampling of related literature and is not meant to be exhaustive. It covers the different
levels of parallelism, the system heterogeneity, the optimization objectives and whether the
methodology considers real-time constraints.

In (Braun et al, 2001), Braun et al. presented a comparison among static heuristics for map-
ping applications onto heterogeneous distributed computing systems aiming to minimize the
makespan. Through this comparison, which included GAs, tabu search, simulated annealing
among others, the experimental results showed that GAs consistently gave the best results
for the parameters and implementation used in this exhaustive study. Nevertheless, this work
is limited to independent tasks and a single objective. Owing the relevance of biologically ins-
pired methodologies for scheduling, Tumeo et al. (Tumeo et al., 2008) provided an ant colony
optimization for mapping and scheduling in heterogeneous multiprocessor systems. Their
solution showed 64% and 55% better results compared to Simulated Annealing and Tabu
Search respectively. In (Lu and He, 2013), the authors proposed a PSO-based GA hybrid
algorithm to schedule a set of tasks on a heterogeneous multi-processor system to minimize
the makespan taking into account the precedence constraints. The schedule obtained out-
performs the GA algorithm and is within 9% of the optimal schedule. In (Kang and Zhang,
2012), Kang and Zhang presented a hybrid GA for static task mapping and scheduling on
heterogeneous systems with satisfaction of the precedence requirements of the application.
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A study of the efficiency of Multi-Objective Evolutionary Algorithms in the task mapping and
scheduling on heterogeneous systems is performed with two different objectives in (Chitra et
al, 2010) ; minimizing the makespan and the average flow-time. The authors in (Devi and
Anju, 2014) proposed a multi-objective scheduling algorithm using Multi-Objective Evolutio-
nary Algorithm (MOEA) for scheduling a collection of dependent tasks on available resources
in a multiprocessor environment. NSGA-II is used to get the Pareto optimal solutions to mi-
nimize at the same time the makespan and the reliability cost. Rajeswari et al. (Rajeswari
et al., 2014) presented an efficient allocation and scheduling method using multi-objective GA
for independent tasks. Such procedure minimizes the makespan and flow-time simultaneously
in a distributed computing system.

In (Samur and Bulkan, 2010) the authors presented a GA approach to solve a bi-criteria
problem (makespan and tardiness) in homogeneous parallel machines and tried to make their
method fairly general to be applied to some other bi-criteria objective functions. In (Sara-
nya et al, 2009), the authors present a parallel multi-objective GA for the task dispatching
problem in heterogeneous distributed computing environment. It exploits the inherent paral-
lelism of GA on a multi-core processor to optimize the result. In (Navaz and Ansari, 2012),
Navaz and Ansari considered the two objectives ; execution time and total cost. They used
the R-NSGA-II approach based on evolutionary computing paradigm and uses an epsilon
dominance based MOEA. In (P. Serafini and Dehuri, 2011), a Combinatorial Multi-objective
Particle Swarm Optimization Based Algorithm is proposed to map a set of dependent tasks
on a heterogeneous systems with consideration of failure on processors and links. The obtai-
ned results outperform the NSGA-II. However, the authors don’t consider the tuning of the
NSGA-II parameters.

In (Bernabe Dorronsoro, 2010), Dorronsoro et al. investigated the problem of multi-objective
mapping on Grids, optimizing simultaneously the makespan and its robustness. For this
purpose, four different MOEAs were studied. These algorithms are NSGA-II, MOEA/D,
IBEA and MOCell. From their experiments, the latter lead to the best results compared
to the others. M. Miryani and al. (Miryani and Naghibzadeh, 2009b) scheduled hard real-
time systems on heterogeneous multi-processor systems taking into account the precedence
relationship between tasks. Likewise, the authors studied the mapping problem from a multi-
objective perspective aiming to minimize the completion time and the number of processors.

After this brief description, Table 6.1 depicts a detailed comparison of these works. In terms
of the comparison’s characteristics, we identify the hardware architecture, real-time aspects,
communication between tasks and optimization strategy.
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Table 6.1 Comparison of Related Work on Multi-processor Mapping and Scheduling

Characteristics Hardware Architecture Real-time Aspects Communication Optimization

Author Heterogeneity Distributed Multi-Procesor Real-Time Preemption Dependency Multi-Objective Algorithm Objectives

Braun et al. 3 3 3 7 7 7 7 11 heuristics Makespan

Tumeo et al. 3 7 3 7 7 3 7 Ant Colony Makespan

Kang et al. 3 3 3 7 7 7 7
PSO-based

Genetic Algorithm Makespan

Kang et al. 3 7 3 7 7 3 7
Hybrid

Genetic Algorithm Makespan

Chitra et al. 3 7 3 7 7 3 3

Weight-Based
MOGA
MOEA

Makespan
flow-time

Reliability Cost

Devi et al. 3 7 3 3 7 3 3 NSGA-II
Makespan

Reliability Cost

Rajeswari et al. 3 3 7 7 7 7 3
Weight-Based

Genetic Algorithm
Makespan
Flow-time

Samur et al. 7 3 7 7 7 7 3
Weight-Based

Genetic Algorithm
Makespan
Tardiness

Saranya et al. 3 3 3 7 7 7 3
Parallel Multi-Objective

Genetic Algorithm
Makespan
Flow-Time

Navas et al. 3 3 7 7 7 7 3 NSGA-II

Makespan
Total Cost

Reliability Cost

Roy et al. 3 3 3 7 7 3 3

Combinatorial
Multi-Objective
Particle Swarm

System Cost
System Reliability

Dorronsoro et al. 3 3 7 7 7 7 3
NSGA-II, MOEA/D
IBEA and MOCell

Makespan
Robustness

Miriany et al. 3 7 3 3 7 7 3 MOGA
Completion Time

Number of Processors

Our Work 3 3 3 3 3 3 3 NSGA-II

Makespan
Communication Cost
Memory Consumption

6.4 FMS Model

An FMS is a very complex piece of software and exhibits a high-level of system integration.
Several system models need to communicate data to other systems to replicate functions of
the aircraft. When developing military flight simulator software, the development team has to
rely on the competence of experts in different areas and with expertise from a multitude of do-
mains, such as mechanics, power electronics, avionics, and more. The use of different models
and their combination for the production of software is referred to as Model-Based Design.
This multi-domain modular approach to designing FMSs allows specialists to build, configure
and test their modules concurrently, regardless of other modules. After initial testing, the
modules are connected and characterized accordingly to form the complete simulation soft-
ware for test and validation purposes. This latter process is called system integration. Such
complex activity results in a network of sub-systems that need to be interconnected together
in order to deliver the platform’s intended functionality.

Aiming at automating and optimizing the integration process by efficiently mapping these
real-time sub-systems (hereafter named tasks) implementing the FMS to the available re-
sources of the HDMS. We formally define the graph modeling the FMS as G =< T,E >,
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where T = {ti|i ∈ {1, ..., n}} is a set of n vertices, each one representing a real-time task
and E = {eij|(i, j) ∈ {1, ..., n}×{1, ..., n}} is a set of edges that represents the dependencies
among these tasks. The edges are weighted by the amount of data exchanged between each
pair of connected tasks. Such graphs are commonly referred to as task graphs. We assume
that there are n tasks and m processors belonging to different machines. In this paper, the
precedence constraints are not considered. Therefore, from the scheduling point of view, the
tasks are independent. Also, we assume that all the tasks are preemptive. Each processing
unit can execute one task at a time, so that the system can process m tasks concurrently.
Each task is defined as a tuple ti =< idi, pi, Ci, di >, where : idi is the ith task id, pi is the
task period i, Ci is the task execution time vector modeling the expected execution time cij
to complete task ti on processor pj, and di is the deadline of the task ti. In a mathematical
formulation of the mapping problem, we define the function Φ that assigns each of n tasks
to any of the m processors :

Φ : t1, ..., tn → p1, ..., pm

∃j ∈ [1,m],∀i ∈ [1, n] s.t.Φ(ti) = pj (6.2)

We start by defining the tasks expected execution time on the HDMS. This information
is defined by specifying a (n × m) matrix named Execution Time Matrix (ETM), where
cij is the expected execution time of the task i on processor j. This model expresses the
execution heterogeneity among the HDMS resources. The elements along a row indicate the
execution times of a specific task on the different processing units, and those along a column
indicate the expected execution time of all tasks on a single node. We also need to define
the amount of data exchanged between each tasks couple. This information is defined in a
square matrix (n×n) that we called Communication Cost Matrix (CCM), where CCM(i, j)
is the the weight of the edge connecting ti to tj and defined as eij. This matrix is known as
the adjacency matrix. CCM is an upper triangular matrix since the data exchanged between
tasks ti and tj are the same as the amount of data exchanged between tasks tj and ti.
The main diagonal entries are equal to zero. Another important feature to consider in our
model is the memory consumption of each task. This information is defined in a Memory
Consumption Vector (MCV ) with n elements where each term mi describes the amount
of memory needed to execute task ti. For the scheduling strategy, we are using the Rate
Monotonic algorithm (Liu and Layland, 1973). This is a fixed-priority algorithm that assigns
priorities to tasks according to their periods. The static priorities are assigned on the basis
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of the task’s period : the shorter the cycle duration is, the higher is the task’s priority.

pi ≤ pj ⇔ Πi ≥ Πj (6.3)

Liu & Layland (Liu and Layland, 1973) proved that a feasible schedule, that will always meet
deadlines, exists if the processor utilization U is below a specific bound. For each task set Θj

composed of k tasks assigned to processor j this test has to be performed with success. This
test has to succeed in all the processors of the target architecture to obtain a valid mapping
solution. Thus, a necessary condition to verify the schedulability of Θj based on the processor
utilization bound is defined by :

U =
k∑
i=1

cij
pi
≤ k.(2 1

k − 1) (6.4)

6.5 Proposed solution

To achieve a valid mapping solution respecting all the timing constraints and minimizing
the defined fitness functions, our solution uses an approach involving two phases. Firstly, we
assign the tasks implementing the FMS onto the available resources of the target architecture
depending on the objective functions. Then, we perform the schedulability test of the assigned
tasks to each processor of the execution platform to ensure the correctness of the solution
from a scheduling point of view. The system model and the mapping approach are depicted
in Figure 6.2.

Our optimization approach is implemented on top of the NSGA-II taking into account sche-
dulability. The studied fitness functions of our implementation are set out in more details
below. We are using closed-form expression for the three objectives to avoid the timing cost
raised by evaluation using simulation.

Makespan (Overall Execution Time) : is the total length of the schedule when all the tasks
on each processor finish their processing. Make-span is the time interval between the start of
the first task and the completion time of the last task of Θj. In this example, the makespan
fitness function is defined as :

f1 = min( max
1≤j≤m

(
∑
i∈Θj

cij)) (6.5)

In Figure 6.3 an example of scheduling eight tasks on two processors is provided. The ma-
kespan is equal to 7.
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Figure 6.2 Mapping strategy of the FMS on the multi-processor target execution platform

Figure 6.3 Example of scheduling eight tasks on two processors showing the obtained makes-
pan
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Communication Cost : one of the most important sources of overheads in the computation
time in HDMS occurs from data transmission between processing units in the network and
reducing it represents the second fitness function of this study. A mathematical formulation
of this fitness function is given below :

f2 = min(
n∑
i=1

(
n∑
j=1

(eij)))/i ∈ Θα; j ∈ Θβ;α 6= β (6.6)

Memory Consumption : the third objective is minimizing the total amount of memory
consumption per processor. In other words, well distribute the memory consumption bet-
ween processing elements. Seen from this angle, the problem is considered as a variant of the
bin packing problem (Coffman et al., 1978) in which the bins refer to the amount of memory
required to execute each task. The memory consumption fitness function is defined as :

f3 = min( max
1≤j≤m

(
∑
i∈Θj

mi)) (6.7)

In the bio-inspired GA, a given population represents a set of solutions to the problem and
new generations are created through genetic operators. According to the evolution theory,
only the strongest individuals of the population are likely to survive and generate offspring,
transmitting their biological inheritance to the next generation. NSGA-II varies from GA
not only in the fact that it addresses multi-objective optimization problems but also in
the selection operation. It also gives the non-dominated solutions belonging or near the
pareto front in one single run. Before selecting a number of individuals to apply the genetic
operators on, the population is ranked on the basis of the non-dominance and crowding
distance concepts. Below, we give more details about how we are implementing and adapting
the NSGA-II to our problem to minimize the fitness functions and deliver valid solutions
from a scheduling perspective.

The pseudo-code of the proposed solution is given in algorithm 3.

Individual Encoding : Each solution is represented as an array of size equal to the number of
tasks and entry in position i indicates the processor allocated to task ti. The genes in these
chromosomes are in the range [1..m]. We are assuming an arbitrary topology for the physical
connectivity of nodes in the distributed system. Figure 6.4 gives a chromosome example
where a 10-task graph is mapped onto 4 processors.

Initial Population : A population is a collection valid individuals. The initial population P
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Algorithm 3: Schedulability-Based NSGA-II
1 Initialize problem parameters;
2 Initialize genetic algorithm parameters;
3 Generate initial population with valid individuals;
4 Evaluate individuals of the initial population;
5 Non-dominated Sorting of the initial population;
6 while gen ≤ Number of Generations do
7 Apply Tournament Selection to create the Mating Pool;
8 while j ≤ Size of Intermediate Population do
9 Select two parents from the Mating Pool Perform a crossover;

10 Perform a mutation;
11 Move to Valid Solution;
12 Insert the Valid Solution to the Intermediate Population;
13 j = j + 1;
14 end
15 Recombination of the Old and Intermediate Populations;
16 Evaluate individuals of the New population;
17 Non-dominated Sorting of the New population;
18 gen = gen + 1;
19 end

Figure 6.4 Example of chromosome Encoding (i.e. a possible mapping implementation)
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consists of |P | randomly generated valid solutions.

Non-dominated Sorting. NSGA-II uses the pareto-based approach in its selection process and
the quality of a given solution is based on its dominance indicator. Non-dominated sorting is
a process in which the solutions of a given generation are assigned to different fronts using the
dominance indicator of this solution compared to all the solutions of the current population.
If we consider that Fi is the front i where rank(Fi) = i, then all the non-dominated solutions
of P are assigned to front F1. Then, all the non-dominated solutions of P−F1 will be assigned
to F2 and so on. We repeat this process until we assign all the solutions of P to the different
fronts. Figure 6.5 gives an example of non-dominated sorting of a small population.

Figure 6.5 Non-dominated Ranking/Sorting of Feasible solution

Crowding Distance. Once we finish the non-dominated sorting of the current population, the
crowding distance is calculated separately for the different fronts. It is defined as the distance
between the two closest solutions on either side of a solution along each objective axis. This
indicator provides a density estimation of solutions on each front and allows us to preserve
diversity during the selection process. The crowding distance is calculated by :

crowdisti =
M∑
m=1

f i+1
m − f i−1

m

fmaxm − fminm

(6.8)

Tournament Selection. We are using a binary tournament selection operator based on the
niched-comparison operator. Since this operator requires both the rank and crowding distance
of each solution in the population, the comparison between two chromosomes randomly picked
from the population to be part of the mating pool is carried out as follows :

1. The individual with lesser rank is selected if ranki 6= rankj

2. If the two individuals belong to the same front (ranki = rankj), the individual with
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the greater crowding distance is selected.

Crossover : After selecting individuals, crossover involves crossing random couples of the
mating pool to produce the individuals of the intermediate population. The child chromosome
inherits the genetic material of its parents. Our operator is a single point crossover in which
a point is randomly selected. The genes of the offspring are copied from one section of the
first parent and the other section from the second parent, as depicted by Figure 6.6.

Figure 6.6 Example of single point crossover operator

Mutation. The mutation operator is applied with a much lower probability than the crossover
operator. A new chromosome is created by copying a randomly picked chromosome and
changing one or more of its genes, as depicted in Figure 6.7. For the Mutation, we are using
a uniform operator which adds a unit rectangular distributed random value to the chosen
gene.

Figure 6.7 Example of uniform mutation operator

Movement to valid solutions. Since our work aims not only to optimize the predefined fitness
functions but also to respect the timing constraints of the FMS using the schedulability
test, the validity of the obtained solution is a key issue. Since our crossover and mutation
operate randomly on the input solutions, we cannot guarantee that all the processors of the
new offspring will succeed their schedulability tests. Therefore, we propose a local search
algorithm allowing the movement from the obtained invalid solution to a valid one in its
neighborhood by applying local changes. We are assuming that the target architecture is
able able to run the overall simulation. Therefore, we are insuring the existence of valid
solutions in our solution space. However, to ensure that the algorithm does not fall in an
infinite loop without finding any valid solution in the neighborhood, we defined a maximum
number of attempts. Thus, if after this predefined number of attempts the search algorithm
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fails to find a valid configuration, the initial invalid solution is rejected. The pseudo code of
the movement towards valid mapping configuration is given in algorithm 4 :

Algorithm 4: Movement to Valid Solution
Input : Invalid Mapping Configuration
Output: Valid Mapping Configuration

1 iter = 0;
2 do
3 while i ≤ Number of processors do
4 Find the tasks mapped in the processor i;
5 Test = Apply schedulability test in the processor i;
6 if Test=fail then
7 while Test=fail do
8 Put the last task mapped in processor i in the Queue;
9 Remove the last task from processor i;

10 Test = Apply schedulability test in the processor i;
11 end
12 else
13 while test=success do
14 Add the last element of the Queue to the processor i;
15 Test = Apply schedulability test in the processor i;
16 if test=success then
17 Remove the last task from the Queue;
18 else
19 Remove the added task from processor i;
20 end
21 end
22 end
23 i = i + 1;
24 end
25 i = 0;
26 iter = iter + 1;
27 while Queue.size 6= 0 or iter ≤ itermax;
28 if iter = itermax then
29 Reject solution;
30 end

Recombination. After applying the genetic operators to the individuals of the mating pool
obtained by tournament selection, the individuals of the intermediate population are com-
bined with the current population and selection is performed to set the individuals of the
next generation. If by adding all the individuals in front Fj all the individuals of the interme-
diate population are placed, then individuals in front Fj are selected based on their crowding
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distance in the descending order until the last solution is added in the population of the
next generation. At this stage, the individuals of the new population are sorted based on
non-dominance and crowding distances are updated. This process is repeated until reaching
the stopping criterion.

6.6 Experimental study

This section is dedicated to the computational experiments in which the performance of our
framework is evaluated. For this purpose, a protocol test is developed in which the data are
randomly generated. During this phase, we opted for a procedure to generate values close to
that of a real FMS. First, the execution time of tasks implementing the FMS are randomly
generated in the range [0, 3] ms. Second, the amount of exchanged data between each pair
of tasks are generated with a uniform distribution on [0, 50] kB/s. Then, for the memory
consumption, the values are in the interval [0, 10] MB. Afterward, the periods are generated
in such a way that the fastest task will run with a period equal to 16 ms. This choice is based
on visualization purposes since the FMS runs 30 fps on a 60 Hz screens.

Since it is a variant of GAs, one of the main issues of NSGA-II is the parameter tuning
process to improve the quality of the obtained solutions and minimize the convergence time.
To calibrate these genetic discrete parameters, we used a star plan in which we start from
an initial configuration of these values. Then, each parameter covers a sample of its possible
values while the other others are held fixed at their latest values. When the performance
metrics reach their best rates, the GA parameter under tuning is fixed to its current value
and we pass to the next parameter, and so on. This operation has been processed based on a
FMS modeled by 100 tasks and 10 heterogeneous machines with 4 processors each. Thence,
a summary of the genetic parameters values yielded the best results on average which will
be used to guide all our experiments.

In the whole experimental process, the focus was given to measure the impact of our mapping
methodology in improving the FMS performance metrics. To quantify the algorithm sensiti-
vity to the problem parameters (Number of machines, number of tasks, connectivity degree,
etc), thirty independent runs are performed for each of the test sets in order to guarantee a
Gaussian approximation for the distribution of the reported averages. Then, we compute the
average accuracy values. Since, the studied fitness functions have different scale, we apply fea-
ture scaling to create shifted and scaled versions of these values to facilitate the comparison
and analysis tasks.

In Figure 6.8, we present the sensitivity of the different fitness functions to the number of
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Table 6.2 Final Genetic Algorithm Parameters Configuration

GA Parameters Value GA Parameters Value
Population Size 100 Mutation Probability 0.2
Number of Generations 500 Selection Operator Tournament Selection
Crossover Operator Single Point Crossover Execution Time ranges [0, 3] ms
Crossover Probability 1.0 Communication Cost ranges [0, 50] kB/s
Mutation Operator Uniform Mutation Memory Consumption ranges [0, 10] MB

machines and the number of tasks implementing the FMS. The study shows that increasing
the number of machines of the HDMS helps in reducing the makespan, and the memory
consumption which is expected. For the communication cost, the algorithm will try to place
tasks that communicate frequently on the same processor or machine to increase the data
locality. By doing so, it creates a conflict with the previously mentioned fitness functions.
Nonetheless, increasing the number of tasks implementing the FMS has an opposite impact
on the mapping metrics by increasing them.

(a) Sensitivty to the size of the execution plat-
form

(b) Sensitivty to the size of the real-time applica-
tion

Figure 6.8 Impact of varying the size of processing elements and the size of Full-Mission
Simulator

Another crucial parameter that differs from one FMS to another is the connectivity degree
of the tasks implementing a given simulator. In the graph modeling the FMS, two tasks are
connected if there is an edges between them. We define the connectivity of a task as the
average number of tasks directly connected to it.

For this parameter, we studied different connectivity ratios to cover a wide range of simulator
categories going from 5 to 50 for an FMS modeled by 100 tasks. From figure 6.9, we note that
the connectivity degree has a perfect linear correlation relationship with the communication
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cost fitness function with a correlation coefficient ≈ 1. On the other hand, we notice a minor
impact on the other objectives. This slight impact is explained by the effect of this parameter
on the made trade-offs.

In figure 6.10, we show the progression of the three fitness functions during the evolution
process. We notice that as the number of generations increases, the fitness functions improve
gradually while keeping a trade-off between the different metrics. Since we are using the
optimal number of generations found by the tuning process, the figure does not show the
steady state of the fitness functions after Gen = 500.

Finally, figure 6.11 shows the non-dominated solutions obtained in a single run by NSGA-II.
Each point in the three-dimensional space is a valid mapping configuration near or belonging
to the pareto front and respecting all the predefined timing constraints of the FMS. It’s up
to the decision makers to choose the most suitable one for their needs.

6.7 Conclusion and Future Work

In this paper, we propose a new framework enabling a multi-objective mapping of real-time
tasks implementing the full-mission simulator on heterogeneous distributed multi-processor
systems. The aim of our approach is to simultaneously minimize the makespan, the commu-

5 10 20 25 50

Connectivity Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o
rm

a
liz
e
d
 F
it
n
e
ss
 F
u
n
ct
io
n

Makespan

Communication Cost

Memory consumption

Figure 6.9 Impact of varying the Connectivity Degree on the quality of the obtained Pareto
front
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Figure 6.10 Evolution of the fitness values of the different performance metrics

nication cost and the memory consumption ensuring that the hard timing constraints are
met. We showcased that exact algorithms cannot solve our problem, thus we studied the use
of Multi-Objective Evolutionary Algorithms and we opted for the Non-Dominated Sorting
Genetic Algorithm II in our study. This paper also paves the way for future research buil-
ding upon its contributions. Our attempt in future work will be, from one side, to migrate
to NSGA-III for more flexibility and scalability when integrating new objectives. From the
other side, to implement a tool to select the most representative sample of non-dominated
solutions to facilitate the task of the decision maker. A deep study of the quality indicators
is needed for this purpose.
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Figure 6.11 The list of the obtained non-dominated solutions (Pareto Front) at the end of
the exploration process
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CHAPTER 7 ARTICLE 3 : HYPAP : A HYPERVOLUME-BASED
APPROACH FOR REFINING THE DESIGN OF EMBEDDED SYSTEMS

Rabeh Ayari, Mahdi Nikdast, Imane Hafnaoui, Giovanni Beltrame, Gabriela Nicolescu
Published to Embedded Systems Letters

Abstract : Designing complex embedded systems requires simultaneous optimization of
multiple system performance metrics that can be addressed by applying Pareto-based multi-
objective optimization techniques. At the end of this type of optimization process, designers
always face Pareto Fronts including a large number of near-optimal solutions from which
selecting the most proper system implementation is potentially infeasible. In this paper, for
the first time, we present HypAp, a hypervolume-based automated approach to systemati-
cally help designers efficiently choose their preferred solutions after the optimization process.
HypAp is a two-stage approach relying on clustering Pareto optimal solutions and then fin-
ding a subset of solutions that maximizes the hypervolume by using a genetic algorithm. The
performance of HypAp is evaluated through applying HypAp to the Pareto front by the case
study of mapping applications on NoC based heterogeneous MPSoC.

7.1 Introduction

New applications, such as internet-of-things (IoT), have driven the integration of a large
number of functionalities into modern embedded systems. As a result, more software and
hardware components need to be used, considerably enlarging the design space of modern
embedded systems (Henzinger, 2006). Furthermore, the design of such systems involves the
optimization of multiple competing objectives (i.e, multi-objective optimization) in which
the preferred system configuration can be realized by finding the best trade-offs between
these objectives (e.g., energy, throughput, etc.) usually expressed using fitness functions (Hill
et al., 2008). This optimization process is referred to as the Design Space Exploration (DSE),
allowing designers to find a near-optimal solution. It is worth mentioning that there is no
unique optimal solution but rather a set of efficient solutions, also known as Pareto solutions.
The set of all the Pareto solutions constitutes the Pareto Front (PF) (Legriel et al., 2010).

From the designers’ perspective, evaluating all the near-optimal solutions (i.e., non-dominated
solutions) is unrealistic. On the other hand, selecting a preferred solution from a large PF
is potentially infeasible. Therefore, a possible solution is to provide a refined representation
of the Pareto Front optimal solutions (i.e., a subset of solutions belonging to the PF) to



93

which we refer as the Reduced Pareto Front (RPF). The novel contribution of this paper is
in developing HypAp, a hypervolume-based automated approach generating a RPF that is
much smaller in size compared to the PF, and yet maintains the main characteristics of the
PF. HypAp helps the system designers effectively to choose their preferred solutions, now
from a RPF includes fewer solutions.

HypAp is a two-stage approach consisting of clustering Pareto Front solutions, and then fin-
ding a subset of solutions from each cluster that maximizes the hypervolume by using a gene-
tic algorithm. We define several quality indicators, including hypervolume, non-uniformity,
and outer-diameter, to evaluate the similarity and effectiveness of the RPF compared to
the PF. As a case study, we apply HypAp to the Pareto front of a network-on-chip (NoC)
mapping optimization problem.

The rest of this paper is organized as follows. Section 7.2 briefly reviews related work. In
Section 7.3, we detail the proposed two-stage approach, called HypAp. Section 7.4 evaluates
the effectiveness of the proposed approach and includes the case study of an NoC mapping
problem and the results. Finally, Section 7.5 concludes our work.

7.2 Related Work

High-level design of embedded systems can be performed by employing different automated
approaches relying on Pareto-based algorithms. Nevertheless, the major drawback of such
works is that designers cannot easily choose their preferred solution(s) from the resulting
large-size PF.

Designers’ preferences can be ignored (Ayari et al., 2016d) or considered in different multi-
objective optimization approaches before the optimization (i.e., a-priori methods), after the
optimization (i.e., a-posteriori methods), or interactively during the optimization process.
An a-priori approach was presented in (Ayari et al., 2016e) to guide the search in the design
space towards a preferred region. In (Miettinen and Mäkelä, 2002), an a-priori method was
proposed based on assigning a relative preference factor (i.e., weight) to each design objective
considering the designer’s preferences. An a-priori technique to optimize one objective and
assign other objectives with an upper constraint was proposed in (Haimes et al., 1971). This
method can alleviate the difficulties faced by the scalarization approach when solving pro-
blems with concave Pareto Fronts. Such techniques, however, require extensive knowledge of
the problem in advance and cannot guarantee the Pareto-optimality of the obtained solutions,
while missing some regions including promising solutions.

A-posteriori preference consideration methods are employed when the relative importance of
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the objectives is unknown. Such techniques guarantee that no superior solution will be missed
and the feasible implementations are available for evaluation. In (Chaudhari et al., 2010),
a clustering approach was proposed to find a RPF by applying K-means method and then
picking the closest solution to the centroid of each cluster as the candidate of that cluster. A
graphical representation, called Level Diagrams, for n-dimensional Pareto Front analysis was
proposed in (Blasco et al., 2008). By clustering the PF and then employing level diagrams
to represent and analyze the RPF, (Zio et al., 2011) proposed a two-stage approach aimed
at identifying a limited number of representative solutions to be presented to the designer.

While there is no unique definition of an optimal selection, all the aforementioned a-posteriori
methods failed to comprehensively evaluate the quality of their RPFs in terms of different
Pareto quality indicators. In this work, an effort is made to find a RPF that highly represents
the PF. Particularly, we evaluate the effectiveness of the RPF in terms of several quality indi-
cators, such as the Pareto-coverage, distribution, uniformity, and extent, and hence quantify
the characteristics of the PF that have been maintained in the RPF.

7.3 HypAp : Our Proposed Approach

This section details our proposed hypervolume-based automated approach, called HypAp,
developed to systematically help with the design choices obtained after the optimization
process (i.e., a-posteriori approach). HypAp is a two-stage approach : Pareto optimal solutions
will be first clustered and then a subset of solutions that maximizes the hypervolume will
be selected. Please note that different performance metrics that need to be optimized during
the DSE have a large size or great variability due to their different distributions and orders
of magnitudes. Consequently, this kind of variability can lead to a knock-on effect on the
clustering result. Therefore, prior to clustering, we normalize the fitness values by adjusting
them to notionally averages (a.k.a. feature scaling) which leads to a better symmetry, and
hence more reliable learning.

7.3.1 Clustering Pareto Front optimal solutions

The first stage of HypAp aims at clustering Pareto Front optimal solutions with respect to
their similarity, facilitating the application of the genetic algorithm in the next stage. We
consider using K-means, which is an unsupervised learning algorithm (Hartigan et al., 1979),
to perform the clustering. K-means groups a given set of solutions into k different clusters
through calculating the centroid for each cluster, and then assigning each solution to the
cluster with the nearest centroid. Finding the solutions that belong to the same cluster, K-
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Figure 7.1 Using the Elbow method to determine the number of clusters : the percentage of
variance explained versus the number of clusters.

means considers employing the euclidean distance. As a result, the sum of squared distances,
d, between the centroid of each cluster, xj, and the solutions on the PF, xi, should be
minimized :

d =
k∑
j=1

n∑
i=1

(xi − x̄j)2, (7.1)

in which k and n are the the number of clusters and solutions, respectively.

In any clustering technique, choosing the right number of clusters (i.e., k) is challenging. The
best choice for k is often ambiguous as it highly depends on the shape and scale of the PF.
In our work, we consider using the Elbow method to determine k (Tibshirani et al., 2001).
Using this method, we consider the number of clusters based on the percentage of variance
explained 1 (see Fig. 7.1), which is the ratio of the between-cluster variance to the total
variance. As a result, based on Fig. 7.1, we choose the number of clusters k corresponding
to the percentage of variance explained of 90%, after which the variance explained gain
marginally drops, and hence increasing the number of clusters will no longer add significant
information.

7.3.2 Hypervolume maximization

Although the resulted clusters from the first stage are informative, the number of solutions
existing in each cluster can still be very large for the designer to make right choices. Fur-
thermore, selecting solutions maintaining the information of the PF from each cluster is

1. In statistics, variance explained measures the proportion to which a mathematical model accounts for
the variation of a given data set.
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challenging. We address this problem by employing an optimization approach seeking ideal
subsets of the PF that maximizes the hypervolume, as we discuss in the following. As a
result, the problem can be seen as a variant of the maximum coverage problem where the
RPF Λ′, in which |Λ′| = k and k is the number of clusters, is obtained in advance. Our aim
is to maximize the diversity of the solutions belonging to Λ′ and the coverage of the PF Λ.

The hypervolume indicator (a.k.a. Lebesgue measure (Coello et al., 2002)) is one of the most
popular quality indicators for multi-objective optimization. It can solely capture the coverage
of the solutions and their distances from the true Pareto front. Therefore, a subset with a
larger hypervolume is likely to present a better set of trade-offs. Considering solutions as
points in an objective space, the hypervolume is the n-dimensional space that is contained
by a solution relative to a reference point defined as the nadir point (depicted in Fig. 7.2) in
our approach. Nadir point is the worst-known value in each dimension.
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Figure 7.2 Hypervolume indicator for the non-dominated solutions with respect to the nadir
point in a bi-objective optimization problem.

The hypervolume indicator for a normalized Pareto Front Λ̄ is defined as (Zitzler et al.,
2007) :

H(Λ̄) =
∫
Y

1 [∃x ∈ X : f(x) ≺ y ≺ z] dy, (7.2)

in which z ∈ <N is the reference point (i.e., the nadir point in our method), f is the vector
obtained by stacking the objectives, and ≺ is the dominance operator defined as x ≺ y ⇔
(x1 < y1) ∧ · · · ∧ (xm < ym).

The application of the hypervolume indicator has been greatly limited by the high compu-
tation cost of existing algorithms for the exact hypervolume computation as it is a #P-Hard
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problem. We consider a methodology based on Monte-Carlo sampling (Hastings, 1970) to
estimate the hypervolume, and hence improve its computation time, while sacrificing the
accuracy within a tolerable limit. Since using the exact hypervolume values are not crucial
in our optimization process, a Monte-Carlo estimation is performed in order to compute the
percentage of random points in the performance space to be dominated by the Pareto Front.
The estimation error related to the employed Monte-Carlo approach after considering 106

random points is within 0.02% which is highly reasonable.

Finally, due to the increasing number of possible configurations, selecting the RPF is non-
trivial and considered as an NP-hard problem. Therefore, one needs to use meta-heuristics to
find a good approximation of the optimal configuration. In order to find this configuration,
we implement a genetic algorithm aiming on the maximization of the hypervolume. After
that, HypAp successfully identifies a RPF that highly represents the PF, as we indicate in
the next section.

7.4 Evaluations and Results

7.4.1 Quality indicators

Several unary quality indicators have been proposed to evaluate the quality of solution sets in
terms of convergence, and diversity. In our work, convergence is ignored since we are assuming
that the PF is the input of HypAp. In order to study the quality of the RPF, we opted for :

Non-Uniformity : A RPF with a lower non-uniformity is more evenly-distributed and better
estimates the PF. Given a normalized Pareto Front Λ̄, non-uniformity is given by(Erbas,
2007) :

NU(Λ̄) =
|Λ̄|−1∑
i=1

|di − d̄|√
m(|Λ̄| − 1)

, (7.3)

where di is the euclidean distance between two consecutive solutions, and d̄ defines the average
distance. Also, |Λ̄| = k is the number of clusters, and m is the dimension of the design space.
Please note that 0 ≤ NU(Λ̄) ≤ 1, where NU(Λ̄) = 0 means that the set is uniformly
distributed.

Outer Diameter : The outer diameter indicator aims at computing the distance between the
ideal objective vector and the nadir objective vector of a given Pareto Front using a distance
metric. This unary indicator is given by (Zitzler et al., 2008) :

OD(Λ̄) = max
1≤i≤n

wi

(
(max
x∈Λ̄

fi(x))− (min
x∈Λ̄

fi(x))
)
, (7.4)
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with weights 0 < wi ≤ 1. If ∀i ∈ [2,m], wi = 1, then the outer diameter becomes the
maximum extent over all the dimensions of the design space. The outer diameter has a low
computation cost and it is agnostic to the problem features.

7.4.2 Case study

In this subsection, we present the case study of a NoC mapping problem with three objectives ;
load variance, communication cost, and energy consumption (Belkacemi et al., 2016). In this
problem, TGFF (Dick et al., 1998) is used to generate a set of purely-synthetic task graphs
with varying number of tasks to model the application. The architecture model consists of p
types of processing elements (PEs) interconnected by a Spidergon NoC topology.

We apply HypAp to the PF, depicted in Fig. 7.3(a), obtained by mapping the generated task
graphs on the NoC architecture. HypAp first classifies the optimal solutions on the PF into
four clusters. Solutions in each cluster are indicated using a unique color in Fig. 7.3(b). As
can be seen, clusters represent different aspects of the PF with respect to the cost functions.

Table 7.1 Comparing the RPF Obtained using HypAp and K-means with the PF of the NoC
case study

Quality indicator PF HypAp RPF K-means RPF
Hypervolume 0.089 0.078 0.051
Non-uniformity 0.031 0.027 0.032
Outer diameter 0.364 0.243 0.261

After clustering, HypAp selects the representative solutions (i.e., RPF), indicated in Fig.
7.3(b), based on maximizing the hypervolume. Employing the quality indicators defined be-
fore, Table 7.1 compares the RPF suggested by HypAP with the PF of the problem. For better
comparison, Table 7.1 also considers the RPF obtained by applying the K-means method pro-
posed in (Chaudhari et al., 2010). As can be seen, HypAp achieves a high hypervolume that is
very close to the one for the PF, while it is also higher than the hypervolume obtained using
K-means. In other words, HypAp proposes a RPF including only four solutions that roughly
represents the same space coverage as the PF. Moreover, higher hypervolume also means
that the selected solutions in HypAP are among the closest ones to the true Pareto front.
As a result, designers can easily choose from these four solutions based on their preferences.
Moreover, HypAp enables the designers to refine their choices through iteratively discovering
the neighborhood of the preferred solutions : each iteration can consider a new subset using
a predefined radius r, representing the smallest disk containing |Λ′| = k solutions.
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Figure 7.3 (a) PF obtained by mapping the generated task graphs on the NoC architecture
along with its 2D illustration, (b), including the clusters and RPF.

Considering the non-uniformity results in Table 7.1, the RPF obtained using HypAp has a
better uniformity compared with that from K-means and even the one from the PF itself. In
other words, knowing that the PF is not uniformly distributed, HypAP suggests a RPF that
indicates a higher uniformity : HypAp not only maintains the features of the PF in the RPF,
but also improves them when it is possible. Moreover, considering the outer-diameter results,
the first observation is that the extent (i.e., spread of the data) is better using K-means,
while HypAp still provides a good extent. Nevertheless, a deeper interpretation of the results
obtained using this indicator shows that HypAp avoids selecting the solutions that are in the
borders of the PF (i.e., extremity of the PF). It is worth mentioning that such selections are
quite poor in terms of representativity : even if they result in a good extent on the PF, they
cannot provide a good-enough reference point for the refinement process explained above.
Consequently, designers will be guided towards fewer directions as no more improvement can
be achieved through the selections made on the extremity of the PF.

7.5 Conclusion

This paper presents HypAp, a hypervolume-based automated approach to systematically help
embedded systems designers choose their preferred solutions after the optimization process.
HypAp first clusters the Pareto Front solutions, and then seeks a Reduced Pareto Front that
maximizes the hypervolume. The result of this preliminary work is critical for the design of
complex embedded systems, in which designers require to choose from Pareto Fronts including
a large number of near-optimal solutions.
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CHAPTER 8 ARTICLE 4 : IMGA : AN IMPROVED GENETIC
ALGORITHM FOR PARTITIONED SCHEDULING ON HETEROGENEOUS

MULTI-CORE SYSTEMS

Rabeh Ayari, Imane Hafnaoui, Giovanni Beltrame, Gabriela Nicolescu
Submitted to Design Automation for Embedded Systems

Abstract : Efficient mapping of tasks onto heterogeneous multi-core systems is very chal-
lenging especially in the context of real-time applications. Assigning tasks to cores is an
NP-hard problem and solving it requires the use of meta-heuristics. Relevantly, genetic algo-
rithms have already proven to be one of the most powerful and widely used stochastic tools
to solve this problem. Conventional genetic algorithms were initially defined as a general
evolutionary algorithm based on blind operators with pseudo-random operations. It is com-
monly admitted that the use of these operators is quite poor for an efficient exploration of big
problems. Likewise, since exhaustive exploration of the solution space is unrealistic, a potent
option is often to guide the exploration process by hints, derived by problem structure. This
guided exploration prioritizes fitter solutions to be part of next generations and avoids ex-
ploring unpromising configurations by transmitting a set of predefined criteria from parents
to children. Consequently, genetic operators, such as initial population, crossover, mutation
must incorporate specific domain knowledge to intelligently guide the exploration of the de-
sign space. In this paper, an improved genetic algorithm (ImGA) is proposed to enhance the
conventional implementation of this evolutionary algorithm. In our experiments, we proved
that ImGA leads to perceptible increase in the performance of the genetic algorithm and its
convergence capabilities.

8.1 Introduction

The trend in the design of modern hardware platforms has shifted towards increasing the
number of processing elements. The rise of multi-core architectures reshaped computer en-
gineering, and long-lasting certainties had to be updated. Moore’s law shifted its focus from
the number of transistors to the number of cores that could be integrated on a chip and Am-
dahl’s law (Davis and Burns, 2011a) was no longer sufficient to describe speed-ups provided
by parallelization. Multi-core systems are being accepted in a wide spectrum of disciplines
in industry. The use of multi-cores with real-time constraints is still a largely unexplored
problem, since, in such systems, ease of integration and predictability are highly sought out.



101

However, due the increase in system complexity, real-time systems producers are begrudgin-
gly accepting the use of multi-core systems due to their ever rising performance. Therefore,
better real-time approaches need to be adopted to satisfy their elevated requirements. In
real-time systems, the correctness of the system behavior depends not only on the results of
its computations, but also on the time at which these results are produced (Burns, 1991).
The schedulability analysis of a system verifies their temporal correctness under a specific
scheduling policy.

In the past, research efforts has been concentrated on scheduling and schedulability analy-
sis of single processor systems. In more recent years, several research works dealt with the
problem of scheduling in multi-core systems (Tafesse et al., 2011). In uni-processor systems,
the processor switches between multiple jobs (Mohammadi and Akl, 2005) whereas in mul-
tiprocessor systems, tasks run concurrently in the different processing units of the parallel
execution platform. In the context of real-time scheduling on multi-core systems, one widely
used approach is the partitioned scheduling. This approach is based on a two-stage approach
going from a global mapping onto the architecture cores to a local scheduling in each core.
For such scheduling technique, one should be able to determine : where the task should be
executed (mapping) and when the task should be executed with respect to the other tasks
running on the same core (uni-processor scheduling).

The complexity involved in finding efficient mapping solutions in multi-core systems has mo-
tivated the use of several meta-heuristics (Singh et al., 2013). Genetic algorithms (GAs),
introduced by Goldberg and Holland (Goldberg and Holland, 1988), have already proven to
be an effective tool for the implementation of partitioned scheduling (Braun et al., 2001).
Conventional genetic algorithms that mimic the process of natural selection were initially
defined as a general evolutionary algorithm based on blind genetic operators (selection, cros-
sover, mutation). While they are known by their ability to explore the solution space of
small problems, this benighted exploration reveals a considerable weakness with bigger pro-
blems presenting sizable solution spaces. Hence, conventional GAs need to be enhanced to
solve such problems. In order to find better solutions rapidly, exploration is often aided by a
guided strategy.

The endeavor of this paper is to propose an Improved Genetic Algorithm (ImGA) to guide the
exploration process and extensively ameliorate the conventional GA findings. To do this, we
are proposing a climbing hill repairing strategy for the population initialization. This strategy
aims on adjusting the randomly generated solutions by incorporating a local search algorithm.
This climbing hill technique iteratively apply local changes on the generated chromosomes
to find a fitter one in its neighborhood. Later, we integrated the schedulability-guided cros-
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sover operator proposed in (Ayari et al., 2016f) to be part of our improved algorithm. Then,
maintaining a vast population diversity is crucial to ensure that the design space was appro-
priately explored and avoid premature convergence by stagnating on sub-optimal solutions.
To face this problem, we propose two main contributions ; (1) a circular mutation operator
switching the workload of the heaviest and lightest processors. (2), a restart technique ba-
sed on injecting randomly generated solutions at advanced stages of the optimization engine
giving a new impetus to the remaining generations. To demonstrate the capabilities of our
proposed ImGA, we compared it against a traditional genetic algorithm. The results show
that ImGA surpasses the traditional genetic algorithm by a large margin and that it was
able to evolve up new fitness peaks and move the population to new and better parts of the
design space.

The rest of the paper is structured as follows. We review some related work in Section 8.2.
Section 8.3 describes the system model used to implement and validate our proposal. Sec-
tion 8.4 presents ImGA with all the details of the enhanced genetic operators. Finally, the
experimental set-up, our results and their discussion, and the conclusions are presented in
Section 8.5, and Section 8.6, respectively.

8.2 Related Work

8.2.1 Scheduling in Multi-core Systems

The trend in multi-core systems is the use of different dissimilar processing units with various
capabilities to build a heterogeneous parallel computing system : Hill et al. (Hill et al., 2008)
claimed that asymmetric multi-core architectures offer potential speedups that are much
greater than symmetric multi-core chips and never worse. Van Craeynest et al. (Van Craey-
nest et al., 2012b) stated that a heterogeneous architecture composed by a single big core and
few smaller cores can attain higher performance and reduce energy consumption. In more
recent years, several new research works dealt with the problem of scheduling in multi-core
systems (Zhuravlev et al., 2012b) (Kwok and Ahmad, 1999), however the problem of sche-
duling in heterogeneous multi-cores carries many open questions, and the use of multi-cores
with real-time constraints is still a largely unexplored problem. Davis and Burns (Davis and
Burns, 2011a) provide an excellent survey of real-time scheduling algorithms for multi-core
systems. They review both partitioned and global approaches, noting that the use of parti-
tioned scheduling allows to exploit a wealth of results on schedulability and optimality for
multi-processor systems. However, heterogeneous systems are explicitly excluded in this sur-
vey. Tumeo et al. (Tumeo et al., 2008), proposed an exploration approach based on ant colony
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algorithm for mapping and scheduling in heterogeneous multiprocessor systems. Moreira et
and al. (Moreira et al., 2007b) present a real-time scheduling algorithm for heterogeneous
multi-cores mixing time-division multiplexing and static-order scheduling. This is a global
static-priority algorithm that requires the solution of a linear programming optimization pro-
blem. Their solution showed 64% and 55% better results compared to Simulated Annealing
and Tabu Search respectively. In (Ayari et al., 2016b), an improved implementation of NSGA-
II has been proposed to schedule the execution of full-mission simulators on heterogeneous
distributed multi-processor systems using a partitioned approach aiming on optimizing the
makespan, memory consumption and communication cost. Qin and Jiang (Qin and Jiang,
2005) propose a heuristic-based, reliability-driven real-time scheduling (global and dynamic-
priority) algorithm for heterogeneous multi-core that "reduces reliability cost by up to 71.4%.
An excellent comparison among eleven of static heuristics for mapping applications onto
heterogeneous distributed computing systems aiming to minimize the makespan has been
conducted by Braun et al. in (Braun et al., 2001). Through this comparison, which included
GAs, tabu search, simulated annealing among others, the experimental results showed that
GAs consistently gave the best results for the parameters and implementation used in this
exhaustive study. Several other works in literature (Erbas et al., 2010; Choi et al., 2012) have
also proven that GAs can lead to better findings in terms of mapping schemes compared to
other heuristics. However, none of the aforementioned works introduces an efficient guidance
approach for the solution space exploration, in order to enhance the search not only of GA
but also of other heuristics. Heuristics were proposed by (Mehran et al., 2008)(ter Braak
et al., 2010)(Hong et al., 2009)(Brião et al., 2008)(Carvalho, 2010) to map tasks at run-time
when new applications arrive and no prior knowledge of the behaviour of these applications.
(Mehran et al., 2008)(ter Braak et al., 2010) propose a dynamic spiral mapping that searches
the allocation of tasks in a spiral way. (Mehran et al., 2008) aimed to optimize energy by
considering a homogeneous 2D-mesh topology and placing the highest communicating task
at the center of the mesh. An improvement of 29% was observed in (Hong et al., 2009) when
migration of tasks to other processors in a homogeneous architecture to balance workload
variation was performed. (Brião et al., 2008) proposed a method that relies on Dynamic
Voltage Scaling and turned off idle processors to reduce energy as well as reduce execution
time. A heuristic was proposed in (Carvalho, 2010) to reduce the communication overhead
on the NoC and hence decrease execution time over a heterogeneous multicore architecture.

8.2.2 Improved implementations

In evolutionary algorithms, guiding the search in the solution space is a widely studied pro-
blem tackled by introducing sophisticated operators and hybrid techniques. In our previous
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work (Ayari et al., 2016f), a simple genetic algorithm based on a novel schedulability-guided
operator (SGX) has proven its efficiency. Our genetic algorithm using SGX easily outperforms
the classical operators by offering at least 21% improvement in terms of ratio of certainly
schedulable tasks. In the current paper, SGX takes its place in ImGA to be part of the pro-
cess with the aim to improve the quality of findings. The crossover operator is considered
as the fundamental search operator in GAs (Zhang et al., 2007). In (Zhang et al., 2007),
Zhang and al. underlined the efficiency of sophisticated operators to improve the quality
of the solutions obtained by standard crossovers. In this work, authors introduced a more
intelligent crossover operator using a local hill-climbing search to construct good building
blocks for object classification. Ahuja et al. (Ahuja et al., 2000) proposed a greedy genetic
algorithm combining the genetic algorithm with greedy approaches to solve large scale qua-
dratic assignment problems. Also, an improved genetic implementation has been proposed in
(Drezner, 2008) by including a local search algorithm to tackle the same problem. In (Shres-
tha and Mahmood, 2016) presented two main ideas of Mitochondrial DNA and Continent
Model to improve the quality of GA. In (Toğan and Daloğlu, 2008), authors proposed a
novel strategy for initial population generation. In addition, two new self-adaptive member
grouping strategies were discussed. In (Ayari et al., 2016g), a simulation-based approach to
assess solutions discarded by schedulability pessimism, and include them in the optimization
process is proposed. Authors included a simulation stage to consider discarded solutions by
schedulabity test pessimism in the exploration process. All these promising results motivated
us to design an improved genetic algorithm to tackle the problem of embedded real-time
application scheduling on heterogeneous multi-core systems under timing constraints.

8.3 System model

Our system model includes a taskset composed of a pool of n tasks to be executed on a
heterogeneous multi-core architecture composed of m processing elements (PEs). We assume
that all the tasks are preemptive and their jobs strictly periodic. Each PE can execute one
task at a time, which allows the system to process m tasks concurrently. Each task is defined
as a tuple ti =< Ti, Ci, Di,Πi >, where : Ti is the period of the task ti, Ci is the worst
case time execution time vector of ith task on all the PEs to point out system heterogeneity,
Di is the deadline of the task ti and Πi > its priority. We represent the tasks worst case
execution time on the different cores by establishing a (n×m) matrix, where cij corresponds
to the worst case execution time of the task ti on processor pj. This model expresses the
heterogeneity of the platform. The elements along a row indicate the execution times of a
specific task on the different processing units, and those along a column indicate the expected
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execution time of all tasks on a single core.

In the partitioned scheduling adopted in our work, whenever the mapping phase is proces-
sed, the taskset assigned to each PE is scheduled accordingly using a uni-processor Rate-
monotonic scheduling policy. Rate-monotonic scheduling algorithm (RM) is by far the most
used real-time algorithm and it is one of the easiest policies to implement. RM is a static-
priority scheduling algorithm for real-time systems (Mohammadi and Akl, 2005). It is a
preemptive algorithm that assigns higher priorities to the tasks with shorter periods Ti.

The Liu & Layland bound (Liu and Layland, 1973) is a schedulability test that provides a
sufficient condition for a task-set to be schedulable when using an RM scheduling policy. Liu
& Layland proved that a feasible schedule (i.e. that will always meet deadlines) exists if the
total processor utilization U is below a specific bound. For each task-set τj composed of k
tasks assigned to processor j, the task-set is guaranteed to be schedulable if this test yields.
The necessary condition to verify the schedulability of τj based on the processor utilization
bound, is defined as :

Uj =
k∑
i=1

cij
Ti
≤ k.(2 1

k − 1) (8.1)

8.4 ImGA for Partitioned Scheduling

In the biology-inspired GA, a population of problem solutions, termed chromosomes, is evol-
ved over successive generations using a set of genetic operators (selection, crossover and
mutation). In each generation, the fitness of every individual in the population is evaluated.
The fittest individuals are stochastically selected from the current population, and each in-
dividual’s genes are recombined and mutated to form a new generation. The new generation
of candidate solutions is then used in the next iteration of the algorithm. Commonly, the
algorithm terminates when either a maximum number of generations has been achieved, or a
satisfactory fitness level has been reached for the population. However conventional genetic
algorithm suffers from premature convergence and pseudo-random search. These problem oc-
curs when the genetic operators, are no more able to generate children that are better than
their parents. This is resulting from the lose of diversity in the optimization engine or the
blind search in the design space. For more details and information concerning the conventio-
nal genetic algorithm and how they can be used to solve real-world problems, we refer the
reader to (Davis, 1991), (Goldberg, 1989), (Banzhaf et al., 1998).

In this paper, a novel strategies for the initial population, crossover, mutation and injection
are adopted in the GA process for the aforementioned intentions. Figure 8.1 presents the
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ImGA flow graph as a series of steps to be performed sequentially. A detailed explanation of
each ImGA’s operation is presented, after, in this section.

Min-max circular 
mutation operator MMM

Performance 
metric evaluation

Generate initial 
population

Climbing hill 
repairing strategy

Mating pool 
generation

Schedulability guided 
crossover operator SGX

Stopping
criterion ?

Stagnation 
detected ?

N

Search engine

Best configuration

Solution encoding

N

Y

Y

Generate artificial 
chromosomes

Select victim 
chromosomes

Inject artificial 
chromosomes

Figure 8.1 Improved Genetic Algorithm work flow

Fitness function

We know that schedulability tests, when successful, provide the guarantee that a task-set
will be schedulable on a single processor. In the context of heterogeneous multiprocessors,
the sub-taskset assigned to each core is the result of the mapping process. Our objective is
to guide the genetic partitioning such that the schedulability of the entire taskset across the
entire multi-core architecture is improved. A sufficient condition for the ith task, assigned
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to the jth core, to be schedulable is whether or not the schedulability test of all the tasks
assigned to core pj is successful. Each solution needs to be awarded a figure of merit, to
indicate how close is to this goal. Since our aim is to maximize the ratio of schedulable tasks
on a given multi-core system based on the Liu & Layland schedulability test, we minimize
the ratio of tasks that fail the test. The fitness function f is defined as the sum of the number
of tasks assigned to those cores the sub-taskset of which violate the schedulability condition,
over the size of the taskset :

f = 1
n

m∑
j=1

 ∑
i s.t. Si=j

1× Γ
 ∑
i s.t. Si=j

cij
pi
≤ kj.(2

1
kj − 1)

 (8.2)

With n,m being respectively the number of tasks and PEs and function Γ returns 0 when the
condition it takes as an input is met, and 1 otherwise. A similar equation can be written for
other scheduling policy , such as EDF scheduling algorithm, by replacing the schedulability
test passed to Γ.

Solution encoding

In our mapping problem, we used an integer coding : each mapping solution is represented
as an array of size n (the number of tasks) where each entry in position i indicates the
processor on which will be mapped the task ti. The genes in these chromosomes are in the
range [0..m− 1].

Climbing hill repairing strategy

The conventional approach of genetic algorithm is randomly initialized population of |P |
design solutions. This initial population significantly influence the speed and the convergence
of the optimization engine. A new initial population methodology has been proposed aiming
on reducing the pseudo-random walking steps to reach the optimum design in the design
space. This methodology is based on a climbing hill repairing strategy. It consists on repairing
the |P | arbitrary generated solutions by looking in the neighborhood while incrementally
changing a single element of these solutions with the aim to find fitter design implementations.
Therefore, we propose a climbing hill repairing strategy allowing the movement from the
generated implementation to a better one in its neighborhood by applying local changes.
This repairing strategy is inspired by the local search technique proposed in (Ayari et al.,
2016h).

Mating pool generation

Tournament selection involves running several tournaments among a set of randomly chosen
competitors from the current population. The winner of each tournament, which has the best
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Neighborhood

Initial
Solution

Fitter
Solution

Figure 8.2 Climbing hill repairing strategy

fitness value, is selected to be part from the mating pool. Solutions belonging to the mating
pool will pass iteratively through the crossover and/or mutation operators. Only, offsprings
with higher quality will be part of the new population. It is worth to mention here that we
adopted an elitism strategy in our recombination process. This strategy aims on copying the
fittest candidates unchanged to the next generation.

Schedulability-Guided Crossover Operator (SGX)

The proposed Schedulability-Guided Crossover Operator, hereafter named SGX, consists of
four steps discussed below using an illustrative example. Lower utilization rates are more
likely to be transferred from parents to children. A privilege will be granted to the fitter
parent.

— Step 1 : Two parents, parent1 and parent2, are randomly selected from the ma-
ting pool to be considered for the crossover process. We assume, for the rest of the
procedure, that parent1 has better fitness value (see section 8.4 for fitness function
definition). In this paper, the choice of fitter parent was random.

0 3 0 3 3 1 1 2 2 1Parent 2
0 1 2 3 4 5 6 7 8 9

Parent 1

0 1 2 3 4 5 6 7 8 9

2 0 0 1 1 3 1 2 0 0

Figure 8.3 Selected solutions parent1 and parent2

— Step 2 : In this step, each parent is represented with an Equivalent Model represen-
tation. Originally, a chromosome is encoded using an array of tasks with the allocated
processor at each position (taskid). In the new model, processors are considered as
containers of the tasks assigned to it. Even though they may look different, both re-
presentations illustrate the same information. By itself, the new model allows us to
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easily keep track of the utilization rate of each processor after all the modifications
that will be performed. In Figure 8.4, we give an example of this representation.

2 0 0 1 1 3 1 2 0 0Parent 1

CPU 0 CPU 1 CPU 2 CPU 3

1

8 6
54 7

39

2

0

0 3 0 3 3 1 1 2 2 1Parent 2

CPU 0 CPU 1 CPU 2 CPU 3

2 8

0

5 6

9 37

1
4

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Figure 8.4 Equivalent Models of parent1 and parent2

— Step 3 : This step is at the core of our operator. It goes through a sequence of
iterations to select the most fitting genes of each parent. Our process can be highlighted
as follows. Since our aim is to guide the solution space exploration by schedulability,
the two parents go through an evaluation stage in which a goodness value based on
the aforementioned fitness function defined in equation 8.2 is assigned to each one
of them. The fittest parent, parent1, is scrutinized at first to select the least busy
processing element cpuelected (i.e. that which was assigned a task-set that results in
the minimum total utilization rate among the cores of the multi-core system). The
tasks mapped to the elected processor are transferred immediately to cpuelected of
the new child. Then, these tasks are removed from parent2 regardless of their host
processors. Subsequently, the processor cpuelected of parent2 is excluded from the next
election iteration and all its tasks are withdrawn from parent1. Finally, after all these
modifications, the processors utilization rates are updated. This procedure is iterated
for the requested number of processors by alternating the parents using a round-
robin principle. This round-robin approach between parents is conducted to avoid
the algorithm from premature convergence. The workings of this step are detailed as
follows :
- As mentioned before, we assumed that parent1 has a better fitness value. Hence, the
first election iteration will be carried out on the parent1. Among the four processing
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units, the fourth processor cpu3 is elected since it has the lowest utilization rate. All
the tasks in this processor (t5) are copied in the fourth processor cpu3 of the offspring.
- Before starting the second election round which will be performed on parent2 and
based on the round-robin strategy, we exclude the previously selected processor cpu3

from the running tournament. Then, we erase all the tasks that have been copied in
the latest sub-step (t5) and those belonging to the excluded processor (t1, t3, t4) from
the two parents. Afterwards, cpu1 is elected among the remaining processors and the
sub-taskset containing t6 and t9 is copied in the same core cpu1 of the new child.
- Now, cpu3 and cpu1 are forbidden from the election tour performed on parent1 and
all the tasks mapped on them in the two parents are withdrawn (t9). Then, cpu2 is
elected and tasks t0 and t7 are transmitted to the offspring.
- During this last stage, cpu0 is added to the list of prohibited processors (cpu3 and
cpu1). Then, we remove the tasks belonging to cpu2 of the first parent (t0) from the
second parent after discarding cpu0 containing t7 and t8. Afterwards, the remaining
resident tasks in cpu0 of parent2 are copied in its counterpart of the offspring.
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Figure 8.5 Work flow of third step of the proposed Schedulability-Guided Crossover Operator
using a 10-task application and a quad-core architecture

— Step 4 : At this stage, some tasks are left non-mapped onto the new offspring. These
remaining genes are obtained by applying a biased recombination between the two
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parents. For each individual, we associate a dominance ratio δi defined as follows.

δ1 = f1

f1 + f2
and δ2 = f2

f1 + f2
(8.3)

The parent’s gene that has a higher dominance value contributes more to the new
offspring. If both dominance values are equal then crossover becomes uniform. As de-
picted in red in Figure 8.6, the remaining non-mapped genes are obtained by applying
a biased crossover by assuming that both of parents have the same weight.

0 3 0 3 3 1 1 2 2 1Parent 2
0 1 2 3 4 5 6 7 8 9

Parent 1

0 1 2 3 4 5 6 7 8 9

2 0 0 3 3 3 1 2 0 1Offspring

2 0 0 1 1 3 1 2 0 0

Figure 8.6 Biased crossover applied for the remaining non-mapped tasks

Min-Max Circular Mutation Operator

Mutation mechanism is a substantial operator aiming on maintaining the vast diversity of the
population and assist in overcoming local minima/maxima in the design space exploration. In
ImGA, we propose a novel min-max circular mutation operator. The operation corresponds
to a rearrangement of the solution encoding entries by moving the final entry to the first
position, while shifting all other entries to the next position. After applying this circular
permutation, we look for the heaviest and lightest processors in terms of number of assigned
tasks. Then we swap these tasks by mapping the tasks assigned to the heaviest processor to
the lighter one and vice versa.

1 2 0 0 3 3 3 1 2 0
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

2 0 0 3 3 3 1 2 0 1

3 2 0 0 1 1 1 3 2 0
0 1 2 3 4 5 6 7 8 9

Offspring

Rotation

Min-Max

Figure 8.7 Min-Max Circular Mutation Operator

Restart using injection strategy
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One of the key improvements enhancing the quality of the traditional GA in our ImGA,
is that it has a supplementary powerful diversity mechanism in addition to the mutation
operator. This mechanism is based on an injection strategy. It consists on injecting a user-
defined rando number of artificial chromosomes (i.e. mapping solutions. Such technique will
smoothly help the optimization engine to escape sub-optimal (local) solutions. This injection
strategy is provoked every time a potential case of premature convergence is detected. This
detection is based on the computation of the hamming distance between successive best
solutions belonging to the different generations. If the best solution remain the same after a
set of generations, than the injection is launched. The search engine will gain the capacity to
surpass its stagnation and hopefully will lead the process to jump out the local traps.

Figure 8.8 An exploration process involving four injections of new solutions after different
stagnation phases

8.5 Results and Discussion

We carried out a performance-based comparison of our operator with fundamentals crossover
operators used in literature. In GAs, one of the persisting big challenges is the parameter
tuning process to improve the quality of the obtained solutions and minimize the convergence
time (Angelova and Pencheva, 2011). In general, researchers acknowledge that a good para-
meter configuration is substantial for significant performance improvements. Due to the large
number of options in the tuning of the genetic parameters, a great deal of time and effort is
required to calibrate them. Such tuning allows studying the effect of each parameter on the
obtained results, as well as the effects of interactions between these parameters. The tuning
process will not be discussed in depth in this paper, only the results of this procedure are
given. The values of the genetic parameters in Table 8.1 yielded the best results on average
and are used for all the conducted experiments.
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Table 8.1 Final Conventional Genetic Algorithm Parameters Configuration

Genetic Parameters Value
Population Size 100
Mating Pool Size 50

Number of Generations 100
Crossover Probability 1.0
Mutation Probability 0.2
Crossover Operator Single Point Operator
Mutation Operator Gaussian Operator
Survival Selection Tournament Selection of size 2

All the experiments discussed here were carried out by randomly generating real-time appli-
cation made by 100 tasks for a quad-core fully heterogeneous architecture. The experiments
were performed thirty times in order to be able to carry out the assumption of a Gaussian
approximation for the distribution of the reported averages listed in this section.
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Figure 8.9 Evolution of the ImGA compared to the conventional GA

Figure 8.9 reports the ratio of schedulable tasks, found by ImGA during its evolution process
for Liu & Layland schedulability test against the traditional GA described above. It can be
noticed that ImGA clearly and greatly surpasses the conventional GA. Our ImGA was able
to reach fitter solutions after only 10 generations before converging to higher quality of near-
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optimal solution. Therefore, ImGA to find out the way to better solutions with successive
generations starting from the first generations. This figure reports also that ImGA maintains
a diverse population during its evolution improving GA’s exploratory power and avoiding
premature convergence. Thus, ImGA is able to refine better solutions from good ones.
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Figure 8.10 Comparison of the partitioning quality of the ImGA and the conventional GA.

Figure 8.10 provides a revealing summary of the conducted experiments. In this figure, we
present a box plot graph allowing us to portray outliers and study the spread of the obtained
results. In this figure, we show that ImGA achieves better findings compared to the conven-
tional genetic algorithm. This is further supported by observing that the upper bound of the
classical GA barely reaches the lower quantile of the ImGA.

After ensuring the increase in performance gained by the use of ImGA, we evaluate how
each of these operations (population initialization, crossover, mutation and injection) affects
the quality of the partitioning. Results are presented in Figures 8.11. We note that, as we
expected, the ratio of schedulable tasks is always higher under ImGA than classical GA.
Moreover, we can observe from these results that the repairing strategy added to the initial
population and the crossover operator are the parameters having the strongest positive impact
on performance. On the other hand, injection strategy and small mutation operator have a
lower effect on it. This impact can be explained by the fact that the aim of these operations
is mainly diversity maintaining than convergence.
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Figure 8.11 Comparison of the partitioning quality of the genetic algorithm using the different
crossover operators.

8.6 Conclusions

Methods for increasing the genetic algorithms accuracy are of great importance. In this paper,
we proposed an improved genetic algorithm that we call it ImGA. ImGA incorporates a guided
search strategy based on a novel genetic operators involving the problem structure. We start
by a local search repairing strategy to enhance the quality of the solutions belonging to the
initial population. Than, we used our schedulability-driven crossover operator to intelligently
explore the design technique. Later, two main techniques were proposed to avoid premature
convergence and increase the population diversity ; mutation operator and random injection
strategy. With the help of the proposed improvements, ImGA is enhanced and becomes
capable of finding near-optimal solutions for the mapping problem on heterogeneous multi-
core systems. We defined the quality of a partitioning for real-time tasksets as the fraction
of tasks with undecided schedulability and we used this metric to compare the partitioning
produced by ImGA against the classical GA. The experiments and the results presented in the
paper strongly reveal the potential capability of the proposed method act as a powerful tool
for the solution space exploration in the context of partitioned scheduling to implementation
particularities of the algorithm.
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CHAPTER 9 GENERAL DISCUSSION

The new trend in the processing of the produced data of IoT real-time embedded devices
has shifted towards doing more computation near the source of data, in the edge of the
network. This need to perform on-device computation helps to reduce latency for critical
and confidenetial data of real-time applications and better processing of the huge amounts
of data being generated by these devices.

Succeeding this transition towards the new paradigm called edge computing requires at the
same time ; designing powerful real-time embedded devices, optimizing the mapping and
scheduling topology real-time embedded systems on multi-processor target platforms and
light mining techniques enabling smarter functioning of these devices.

The data produced by IoT devices contain valuable information about user preferences and
needs. However, this information is hidden behind billions of events. Therefore, efforts are
needed to dynamically extract the requested information. Moreover, the huge size and dyna-
mic nature of the streaming data make the task of learning harder.

In the previous chapters, we presented a set of optimization and data mining techniques and
tools to enhance the design and usage of these real-time devices. These methods are structured
in three parts to align with the three major objectives presented in the Introduction :

— Part 1 : Perform online mining of the produced data in order to extract the valuable
hidden information.

— Part 2 : Conceive better real-time embedded devices.
— Part 3 : Help designers in the task of decision making while choosing the most prferred

implementation.

The proposed methods can be bivided in two main categories :

1. Online data mining for better functioning of real-time embedded systems
— The definition of an effective fully online data stream clustering algorithm called

DeDaSC. The proposed algorithm is based on incremental Delaunay triangulation
DeDaSC. This is an incremental, one-pass density-based algorithm, which is able
to construct arbitrary shaped in real time with considerable optimization of time
and space. DeDaSC has intuitive advantages over traditional techniques which try
to cluster the whole dataset at one time rather than processing the data stream
evolving over time. In this context, DeDaSC has been applied to enhance IoT
embedded devices functioning. However, the proposed algorithm, due to its capa-
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bilities, may be used at various stages of embedded systems life cycle from design
to aging detection.

2. Optimization to design more powerful real-time embedded systems
— The proposition of a fully automated approach enabling a multi-objective map-

ping of real-time tasks implementing the full-mission simulator on heterogeneous
distributed multi-processor systems using Non-Dominated Sorting Genetic Algo-
rithm II. The aim of the proposed approach is to simultaneously minimize the
makespan, the communication cost and the memory consumption ensuring that
the hard timing constraints are met. Once the list of near-otimal solutions (Pareto
front) is obtained, designers face the problem of choosing the appropriate solution
to prototyping from this large non-dominated solutions.

— At this point, the challenge that has been raised at this stage is how to efficiently
find a representative set of Pareto optimal solutions, quantify the trade-offs in
satisfying the different objectives, and finding a single solution that satisfies the
subjective preferences of the designer. In this context, in Chapter 6, we presented
a hypervolume-based approach to choose a representative subset of the obtained
Pareto front (HypAp). This reduced subset facilitates designer’s task by easily
picking the best solution based on designer preferences.

— The definition and implementation of an improved genetic algorithm (ImGA) to
guide the search engine during the design space exploration. ImGA incorporates a
guided search strategy based on a novel genetic operators involving the problem
structure (in this context system’s schedulability). We defined the quality of a par-
titioning for real-time tasksets as the fraction of tasks with decided schedulability.
We used this metric to strongly reveal the potential capability of the partitioning
produced by ImGA against the classical GA.
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CHAPTER 10 CONCLUSION AND PERSPECTIVES

This thesis is motivated by the the raising challenges concerned with the design and functio-
ning of real-time embedded systems that will be placed on the edge of the network. In this
last part of this document, we present the summary of the thesis and directions for future
research.

10.1 Final remarks

Nowadays, it may be evidence that more and more researchers believe that edge computing
will be the next big trend after cloud computing in the context of IoT networks. In this
dissertation, we zoomed in on the problem of design and usage of real-time applications
on multi-processor based devices. Accurately, our aim was to leverage the time-to-market
of complex real-time systems, in relation with Internet of Things, and more specifically to
serve the edge computing paradigm. The panoply of tools developed within this research will
help IoT community to succeed the processing transition from the heart to the edge of the
network.

In this context, the scientific contributions behind this thesis can be summarized as follows :

1. The definition and implementation of a new fully online data stream clustering algo-
rithm.

2. The implementation of a fully automated design space exploration process based on
multi-objective evolutionary algorithm to dispatch the execution of real-time applica-
tions on heterogeneous multi-processor systems.

3. The proposition of a hypervolume-based approach to help designers choose the pre-
ferred implementation from the obtained Pareto front.

4. The definition of a schedulability guided exploration engine based on an improved
evolutionary algorithm.

10.2 Thesis perspectives

The results presented in the different papers of this dissertation point out to several inter-
esting directions for future work. This section discusses potential ways forward providing
possible improvements. Several research lines are open by the mining and optimization me-
thods proposed in the previous chapters.
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1. The analysis of the efficiency of the proposed online clustering algorithm needs to be
addressed with other real-life datasets. These real-data are not only limited to the IoT
but also to other domains.

2. Expanding the multi-objective optimization algorithm in order to incorporate new
metrics. Expanded implementation may assess other performance metrics, such as
power consumption.

3. The automation of the guided design space exploration process using agnostic opera-
tors would be a further improvement of our ImGA.

4. The hypervolume based approach can be improved by applying a dimensionality re-
duction process such us principal component analysis prior to clustering the Pareto
front. Introducing this reduction allow the generalization of HypAp to Pareto fronts
with higher dimensions.

5. While we claim that the online data stream clustering algorithm can hugely impact
the search engine if adequately included in the exploration of the design space, more
experiments are needed to solidify our hypotheses.
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