2 research outputs found

    Test Procedures for Synchronized Oscillators Network CMOS VLSI Chip

    Get PDF
    The paper presents test procedures designed for application-specific integrated circuit (ASIC) CMOS VLSI chip that implements a synchronized oscillator neural network with a matrix size of 32×32 for object detecting in binary images. Networks of synchronized oscillators are recently developed tool for image segmentation and analysis. This paper briefly introduces synchronized oscillators network. Basic chip analog building blocks with their test procedures and measurements results are presented. In order to do measurements, special basic building blocks test structures have been implemented in the chip. It let compare Spectre simulations results to measurements results. Moreover, basic chip analog building blocks measurements give precious information about their imperfections caused by MOS transistor mismatch. This information is very usable during design and improvement of a special setup for chip functional tests. Improvement of the setup is a digitally assisted analog technique. It is an idea of oscillators tuning procedure. Such setup, oscillators tuning procedure and segmentation of a sample binary image are presented

    Implementation of a Synchronized Oscillator Circuit for Fast Sensing and Labeling of Image Objects

    Get PDF
    We present an application-specific integrated circuit (ASIC) CMOS chip that implements a synchronized oscillator cellular neural network with a matrix size of 32 × 32 for object sensing and labeling in binary images. Networks of synchronized oscillators are a recently developed tool for image segmentation and analysis. Its parallel network operation is based on a “temporary correlation” theory that attempts to describe scene recognition as if performed by the human brain. The synchronized oscillations of neuron groups attract a person’s attention if he or she is focused on a coherent stimulus (image object). For more than one perceived stimulus, these synchronized patterns switch in time between different neuron groups, thus forming temporal maps that code several features of the analyzed scene. In this paper, a new oscillator circuit based on a mathematical model is proposed, and the network architecture and chip functional blocks are presented and discussed. The proposed chip is implemented in AMIS 0.35 μm C035M-D 5M/1P technology. An application of the proposed network chip for the segmentation of insulin-producing pancreatic islets in magnetic resonance liver images is presented
    corecore