863 research outputs found

    A Novel Gesture-based CAPTCHA Design for Smart Devices

    Get PDF
    CAPTCHAs have been widely used in Web applications to prevent service abuse. With the evolution of computing environment from desktop computing to ubiquitous computing, more and more users are accessing Web applications on smart devices where touch based interactions are dominant. However, the majority of CAPTCHAs are designed for use on computers and laptops which do not reflect the shift of interaction style very well. In this paper, we propose a novel CAPTCHA design to utilise the convenience of touch interface while retaining the needed security. This is achieved through using a hybrid challenge to take advantages of human’s cognitive abilities. A prototype is also developed and found to be more user friendly than conventional CAPTCHAs in the preliminary user acceptance test

    Completely Automated Public Physical test to tell Computers and Humans Apart: A usability study on mobile devices

    Get PDF
    A very common approach adopted to fight the increasing sophistication and dangerousness of malware and hacking is to introduce more complex authentication mechanisms. This approach, however, introduces additional cognitive burdens for users and lowers the whole authentication mechanism acceptability to the point of making it unusable. On the contrary, what is really needed to fight the onslaught of automated attacks to users data and privacy is to first tell human and computers apart and then distinguish among humans to guarantee correct authentication. Such an approach is capable of completely thwarting any automated attempt to achieve unwarranted access while it allows keeping simple the mechanism dedicated to recognizing the legitimate user. This kind of approach is behind the concept of Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA), yet CAPTCHA leverages cognitive capabilities, thus the increasing sophistication of computers calls for more and more difficult cognitive tasks that make them either very long to solve or very prone to false negatives. We argue that this problem can be overcome by substituting the cognitive component of CAPTCHA with a different property that programs cannot mimic: the physical nature. In past work we have introduced the Completely Automated Public Physical test to tell Computer and Humans Apart (CAPPCHA) as a way to enhance the PIN authentication method for mobile devices and we have provided a proof of concept implementation. Similarly to CAPTCHA, this mechanism can also be used to prevent automated programs from abusing online services. However, to evaluate the real efficacy of the proposed scheme, an extended empirical assessment of CAPPCHA is required as well as a comparison of CAPPCHA performance with the existing state of the art. To this aim, in this paper we carry out an extensive experimental study on both the performance and the usability of CAPPCHA involving a high number of physical users, and we provide comparisons of CAPPCHA with existing flavors of CAPTCHA

    Designing Mobile Friendly CAPTCHAs: An Exploratory Study.

    Get PDF
    CAPTCHAs (Completely Automated Public Turing Test to Tell Computers and Humans Apart) are one of the most widely used authentication mechanisms that help to prevent online service abuse. With the advent of mobile computing, mobile devices such as smartphones and tablets have become the primary way people access the Internet. As a result, increasing attention has been paid to designing CAPTCHAs that are mobile friendly. Although such CAPTCHAs generally show their advantages over traditional ones, it is still unclear what the best practices are for designing a CAPTCHA scheme that is easy to use on mobile devices. In this paper, we present an exploratory study that focuses on developing a more holistic view of usability issues with interactive CAPTCHAs to inform design guidance. This is done through investigating the usability performance of seven mobile friendly CAPTCHA schemes representing five different CAPTCHA types

    TAPCHA: An Invisible CAPTCHA Scheme

    Get PDF
    TAPCHA is a universal CAPTCHA scheme designed for touch-enabled smart devices such as smartphones, tablets and smartwatches. The main difference between TAPCHA and other CAPTCHA schemes is that TAPCHA retains its security by making the CAPTCHA test ‘invisible’ for the bot. It then utilises context effects to maintain the readability of the instruction for human users which eventually guarantees the usability of the scheme. Two reference designs, namely TAPCHA SHAPE & SHADE and TAPCHA MULTI are developed to demonstrate the use of this scheme

    CAPTCHA Types and Breaking Techniques: Design Issues, Challenges, and Future Research Directions

    Full text link
    The proliferation of the Internet and mobile devices has resulted in malicious bots access to genuine resources and data. Bots may instigate phishing, unauthorized access, denial-of-service, and spoofing attacks to mention a few. Authentication and testing mechanisms to verify the end-users and prohibit malicious programs from infiltrating the services and data are strong defense systems against malicious bots. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is an authentication process to confirm that the user is a human hence, access is granted. This paper provides an in-depth survey on CAPTCHAs and focuses on two main things: (1) a detailed discussion on various CAPTCHA types along with their advantages, disadvantages, and design recommendations, and (2) an in-depth analysis of different CAPTCHA breaking techniques. The survey is based on over two hundred studies on the subject matter conducted since 2003 to date. The analysis reinforces the need to design more attack-resistant CAPTCHAs while keeping their usability intact. The paper also highlights the design challenges and open issues related to CAPTCHAs. Furthermore, it also provides useful recommendations for breaking CAPTCHAs

    A Novel Design of Audio CAPTCHA for Visually Impaired Users

    Get PDF
    CAPTCHAs are widely used by web applications for the purpose of security and privacy. However, traditional text-based CAPTCHAs are not suitable for sighted users much less users with visual impairments. To address the issue, this paper proposes a new mechanism for CAPTCHA called HearAct, which is a real-time audio-based CAPTCHA that enables easy access for users with visual impairments. The user listens to the sound of something (the “sound-maker”), and he/she must identify what the sound-maker is. After that, HearAct identifies a word and requires the user to analyze a word and determine whether it has the stated letter or not. If the word has the letter, the user must tap and if not, they swipe. This paper presents our HearAct pilot study conducted with thirteen blind users. The preliminary user study results suggest the new form of CAPTCHA has a lot of potential for both blind and visual users. The results also show that the HearAct CAPTCHA can be solved in a shorter time than the text-based CAPTCHAs because HearAct allows users to solve the CAPTCHA using gestures instead of typing. Thus, participants preferred HearAct over audio-based CAPTCHAs. The results of the study also show that the success rate of solving the HearAct CAPTCHA is 82.05% and 43.58% for audio CAPTCHA. A significant usability differences between the System Usability score for HearAct CAPTCHA method was 88.07 compared to audio CAPTCHA was 52.11%. Using gestures to solve the CAPTCHA challenge is the most preferable feature in the HearAct solution. To increase the security of HearAct, it is necessary to increase the number of sounds in the CAPTCHA. There is also a need to improve the CAPTCHA solution to cover wide range of users by adding corresponding image with each sound to meet deaf users’ needs; they then need to identify the spelling of the sound maker’s word
    • 

    corecore