4 research outputs found

    Improved Approximation Algorithms for Computing k Disjoint Paths Subject to Two Constraints

    Full text link
    For a given graph GG with positive integral cost and delay on edges, distinct vertices ss and tt, cost bound CZ+C\in Z^{+} and delay bound DZ+D\in Z^{+}, the kk bi-constraint path (kkBCP) problem is to compute kk disjoint stst-paths subject to CC and DD. This problem is known NP-hard, even when k=1k=1 \cite{garey1979computers}. This paper first gives a simple approximation algorithm with factor-(2,2)(2,2), i.e. the algorithm computes a solution with delay and cost bounded by 2D2*D and 2C2*C respectively. Later, a novel improved approximation algorithm with ratio (1+β,max{2,1+ln1β})(1+\beta,\,\max\{2,\,1+\ln\frac{1}{\beta}\}) is developed by constructing interesting auxiliary graphs and employing the cycle cancellation method. As a consequence, we can obtain a factor-(1.369,2)(1.369,\,2) approximation algorithm by setting 1+ln1β=21+\ln\frac{1}{\beta}=2 and a factor-(1.567,1.567)(1.567,\,1.567) algorithm by setting 1+β=1+ln1β1+\beta=1+\ln\frac{1}{\beta}. Besides, by setting β=0\beta=0, an approximation algorithm with ratio (1,O(lnn))(1,\, O(\ln n)), i.e. an algorithm with only a single factor ratio O(lnn)O(\ln n) on cost, can be immediately obtained. To the best of our knowledge, this is the first non-trivial approximation algorithm for the kkBCP problem that strictly obeys the delay constraint.Comment: 12 page

    Edge disjoint paths with minimum delay subject to reliability constraint

    Get PDF
    Recently, multipaths solutions have been proposed to improve the quality-of-service (QoS) in communication networks (CN). This paper describes a problem, DP/RD, to obtain the -edge-disjoint-path-set such that its reliability is at least R and its delay is minimal, for 1. DP/RD is useful for applications that require non-compromised reliability while demanding minimum delay. In this paper we propose an approximate algorithm based on the Lagrange-relaxation to solve the problem. Our solution produces DP that meets the reliability constraint R with delay(1+k)Dmin, for k1, and Dmin is the minimum path delay of any DP in the CN. Simulations on forty randomly generated CNs show that our polynomial time algorithm produced DP with delay and reliability comparable to those obtained using the exponential time brute-force approach

    A New Approximation Algorithm for Computing 2-Restricted Disjoint Paths

    No full text
    In this paper we study the problem of how to identify multiple disjoint paths that have the minimum total cost OPT and satisfy a delay bound D in a graph G. This problem has lots of applications in networking such as fault-tolerant quality of service (QoS) routing and network-flow load balancing. Recently, several approximation algorithms have been developed for this problem. Here, we propose a new approximation algorithm for it by using the Lagrangian Relaxation method. We then present a simple approximation algorithm for finding multiple link-disjoint paths that satisfy the delay constraints at a reasonable total cost. If the optimal solution under delay-bound D has a cost OPT, then our algorithm can find a solution whose delay is bounded by (1+1/k)D and the cost is no more than (1+k)OPT. The time complexity of our algorithm is much better than the previous algorithms. Copyright © 2007 The Institute of Electronics, Information and Communication Engineers
    corecore