217,154 research outputs found

    PoN-S : a systematic approach for applying the Physics of Notation (PoN)

    Get PDF
    Visual Modeling Languages (VMLs) are important instruments of communication between modelers and stakeholders. Thus, it is important to provide guidelines for designing VMLs. The most widespread approach for analyzing and designing concrete syntaxes for VMLs is the so-called Physics of Notation (PoN). PoN has been successfully applied in the analysis of several VMLs. However, despite its popularity, the application of PoN principles for designing VMLs has been limited. This paper presents a systematic approach for applying PoN in the design of the concrete syntax of VMLs. We propose here a design process establishing activities to be performed, their connection to PoN principles, as well as criteria for grouping PoN principles that guide this process. Moreover, we present a case study in which a visual notation for representing Ontology Pattern Languages is designed

    Pressure-impulse diagram method:a fundamental review

    Get PDF
    Accidental and deliberate explosions stemming from catastrophic events in the petroleum industry, incidents during complex manufacturing processes, mishandling or failure of domestic gas appliances or installations, terrorist attacks and military engagements, are becoming increasingly relevant in structural design. Pressure‐impulse (P‐I) diagrams are widely used for the preliminarily assessment and design of structures subjected to such extreme loading conditions. A typical P‐I diagram provides information concerning the level of damage sustained by a specific structural member when subjected to a blast load. This paper presents a state‐of‐the‐art review describing the development of the P‐I diagram method over the last 70 years, the main assumptions upon which its development is based and the framework through which such the method is applied in practice. The structural analysis methods used for the derivation of P‐I curves are discussed and the existing approaches are categorised according to algorithms used. A review of the P‐I curve formulae proposed to date is performed, where the formulae are classified according to the formulation methods

    PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures

    Full text link
    Persistence diagrams, the most common descriptors of Topological Data Analysis, encode topological properties of data and have already proved pivotal in many different applications of data science. However, since the (metric) space of persistence diagrams is not Hilbert, they end up being difficult inputs for most Machine Learning techniques. To address this concern, several vectorization methods have been put forward that embed persistence diagrams into either finite-dimensional Euclidean space or (implicit) infinite dimensional Hilbert space with kernels. In this work, we focus on persistence diagrams built on top of graphs. Relying on extended persistence theory and the so-called heat kernel signature, we show how graphs can be encoded by (extended) persistence diagrams in a provably stable way. We then propose a general and versatile framework for learning vectorizations of persistence diagrams, which encompasses most of the vectorization techniques used in the literature. We finally showcase the experimental strength of our setup by achieving competitive scores on classification tasks on real-life graph datasets

    Functional approach to the non-mesonic decay of Lambda-hypernuclei

    Full text link
    We present an evaluation of the non-mesonic decay widths for Lambda-hypernuclei (Lambda N --> NN, Lambda NN --> NNN) within the framework of the polarization propagator method. The full Lambda self-energy is evaluated microscopically in nuclear matter by using the functional approach, which supplies a theoretically well grounded approximation scheme for the classification of the relevant diagrams, according to the prescriptions of the bosonic loop expansion. We employ average Fermi momenta, suitably adapted to different mass number regions (medium-light, medium and heavy hypernuclei). Moreover, we study the dependence of the decay rates on the NN and Lambda-N short range correlations. With a proper choice of the parameters which control these correlations in the new approximation scheme, it is possible to reproduce the experimental decay widths for A > 10 hypernuclei.Comment: 25 pages, 8 figure
    • 

    corecore