

Aalborg Universitet

Anytime decision making based on unconstrained influence diagrams

Luque, Manuel; Nielsen, Thomas Dyhre; Jensen, Finn Verner

Published in:
International Journal of Intelligent Systems

DOI (link to publication from Publisher):
10.1002/int.21780

Publication date:
2016

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Luque, M., Nielsen, T. D., & Jensen, F. V. (2016). Anytime decision making based on unconstrained influence
diagrams. International Journal of Intelligent Systems, 31(4), 379-398. DOI: 10.1002/int.21780

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 29, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60625841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1002/int.21780
http://vbn.aau.dk/en/publications/anytime-decision-making-based-on-unconstrained-influence-diagrams(c44b167e-ec0d-4a59-9a1b-16b0a4a3d18c).html

Anytime decision making

based on unconstrained influence diagrams

Manuel Luque, Thomas D. Nielsen and Finn V. Jensen∗†

July 14, 2015

Abstract

Unconstrained influence diagrams extend the language of influence diagrams

to cope with decision problems in which the order of the decisions is unspecified.

Thus, when solving an unconstrained influence diagram we not only look for an

optimal policy for each decision, but also for a so-called step-policy specifying the

next decision given the observations made so far. However, due to the complexity

of the problem, temporal constraints can force the decision maker to act before the

solution algorithm has finished, and, in particular, before an optimal policy for the

first decision has been computed. This paper addresses this problem by proposing

an anytime algorithm that at any time provides a qualified recommendation for the

first decisions of the problem. The algorithm performs a heuristic-based search in a

decision tree representation of the problem. We provide a framework for analyzing

the performance of the algorithm, and experiments based on this framework indicate

that the proposed algorithm performs significantly better under time constraints

than dynamic programming.

∗Manuel Luque is with the Department of Artificial Intelligence, UNED, Madrid, 28040 Spain (e-mail:
mluque@dia.uned.es).
†Thomas D. Nielsen and Finn V. Jensen are with the Department of Computer Science, Aalborg

University, Aalborg, 9220 Denmark (e-mail: {tdn,fvj}@cs.aau.dk)

1

1 Introduction

An influence diagram (ID) is a framework for representing and solving Bayesian decision

problems with a linear temporal ordering of the decisions.6 However, in many domains,

finding an ordering of the decisions is an integral part of the decision problem, and in these

situations the use of IDs would require all decision orderings to be explicitly specified in

the model.

Unconstrained influence diagrams (UIDs) were introduced to represent and solve de-

cision problems of this type.8 An optimal strategy in this framework consists not only

of an optimal policy for each decision, but also of a step-strategy that prescribes the

next decision to consider given the observations and decisions made so far. Such strate-

gies are computable using dynamic programming in a way similar to that for traditional

IDs.7,11,17,18

Unfortunately, many real world decision problems have an inherent complexity that

makes evaluation through exact methods intractable when time is scarce. Moreover, even

if you had the time for solving the problem, storing the solution as a simple lookup table

may be a problem: the number of possible past scenarios to consider in a policy may be

intractably large.

When working under time constraints, the user may need to take the first decision

and cannot wait for the algorithm to terminate before deciding on what to do first. For

example, Ictneo, an ID model for jaundice management in infants,3 requires a maximum

storage capacity of 1.66 × 1014 positions, thus forcing the authors to devise methods to

make the ID tractable. However, slight modifications to the problem, such as adding

new medical tests or calculating the best test ordering, could easily make the problem

intractable again. Even if the model could be solved, a doctor may not have the time

to wait until the end of the evaluation to make the first decision. Similar tight temporal

constraints can appear in problem domains such as the response to natural disasters, to

failures in industrial production plants, or to uncertain events in autonomous navigation.

2

The current evaluation algorithm for UIDs8 is a dynamic programming algorithm that

starts computing an optimal policy for the last decision and moves backwards in time

until it reaches the first decision. The algorithm starts spending effort on calculating

a policy for a distant decision with an enormous space for the past, a task which will

decrease considerably in size when you actually approach the point of the decision. If the

algorithm is stopped prematurely, it is because the decision maker needs to take the first

decision. In that moment the prescription given by the algorithm for the first decision

does not give any clue on what to do first. Thus, the result is not satisfactory for a

decision maker impatiently awaiting advice.

Although several authors (see, e.g.,2,4) have proposed algorithms for finding a trade-

off between the computational cost and the quality of the solution in decision making

situations under time constraints, to the best of our knowledge none of these contributions

address the problem of providing informed advice on the first decision(s)1.

In this paper we address the problem of providing informed any-time advice on the

first decisions in IDs and UIDs. The algorithm provides a solution whenever it is stopped,

and given sufficient time it will eventually provide a correct solution. To address this

problem, the proposed anytime algorithm starts with the first decision and works its way

forward in time. Due to the nature of the problem, you cannot be sure of the policy for the

first decision before the entire problem has been solved. However, the algorithm will over

time gradually improve the probability of choosing the best decision. We also provide a

framework for analyzing the performance of the algorithm as well as experimental results

using randomly generated UIDs, which demonstrate the feasibility of the approach.

2 Unconstrained influence diagrams

UIDs8 generalizes IDs6 in order to represent and solve decision problems in which the

order of decisions is not linear, and for which the decision maker is interested in the best

1In Section 4 we will explain why we study the first decisions instead of not only the first decision.

3

ordering as well as an optimal choice for each decision. Since UIDs contains IDs as a

subclass, we will in this section focus on describing the representation and solution of

UIDs.

2.1 The representation language

We start by considering an example adapted and simplified from Mediastinet, a real-

world ID for the mediastinal staging of non-small cell lung cancer (NSCLC).9,10 A physi-

cian is trying to decide on a policy for treating patients (Tr) suffering from NSCLC. After

an initial CT scan of the patient (CT), the physician has to classify the tumor (N2 N3)

to find out whether there is metastasis. The physician can decide to perform a trans-

bronchial needle aspiration test (TBNA?) and/or a positron emission tomography test

(PET?) and/or an endobronchial ultrasound test (EBUS?), which will produce the test

results TBNA, PET, and EBUS, respectively. Note that the order in which the tests

are performed is not specified, that the result of a test is only available if the physician

decides to perform the corresponding test, and that each test can be performed at most

once.

To represent this simplified problem by an ID we have to represent the unspecified

ordering of the tests as a linear ordering of decisions. Thus, the ID has to include three

test decisions (T1, T2, and T3) and three result-nodes (R1, R2, and R3). Each test decision

has four states (tbna, pet, ebus and no-test) and each of the result nodes has seven states,

postbna, negtbna, pospet, negpet, posebus, negebus, and no-result. Fig. 1 shows the resulting ID

representation. Not only does the ID representation obscure the structure of the decision

problem, but for large decision problems this modeling technique will also be prohibitive

as all possible scenarios should be explicitly encoded in the model.

In the UID framework, the combinatorial problem of representing non-sequential deci-

sion problems is postponed to the solution phase. A UID representation for the problem

above is shown in Fig. 2. It is clear that this representation is more compact and un-

4

N2 N3CT

T1

T2 T3

R1 R2 R3 Tr

U1 U4

U2 U3

Figure 1: An ID representation for a simplified and adapted problem of mediastinal
staging of non-small cell lung cancer.

derstandable than the ID in Fig. 1. Moreover, if we had not simplified the problem of

Mediastinet and we had included all the tests in the UID, then the representation

would still be affordable because for each possible new test to be performed we only need

to add one decision node (representing the choice of performing the test) and one node

representing the result of the test.

N2 N3

CT

TBNA? TBNA

PET? PET

EBUS? EBUS

Tr

U

Figure 2: A UID for a simplified and adapted problem of mediastinal staging of non-small
cell lung cancer.

An unconstrained influence diagram (UID) is a directed acyclic graph (DAG) over

three sets of nodes: decision nodes (rectangles) VD, chance nodes VC , and utility nodes

(diamonds) VU . Chance nodes can be of two types, observable (double-circles) and non-

observable (single-circles). We require that utility nodes have no children. We will use

the terms node and variable interchangeably when this does not cause any confusion.

The quantitative information associated with a UID is given by (1) assigning to each

chance node C a probability distribution P (C | pa(C)) for C given each configuration of

5

its parents pa(C), and (2) assigning to each utility node U a utility function ψU that maps

each configuration of the parents of U into a real number. We assume that the utility

functions are combined additively into a joint utility function ψ.

The semantics of the links are similar to the semantics for IDs. However, as opposed to

IDs, a total ordering of the decision nodes is not required. While non-observable variables

are variables that will never be observed, an observable variable will be observed when all

its antecedent decision variables have been decided.

The structural specification of a UID yields a partial temporal order. If the partial

order is extended to a linear order we get an ID. Such an extended order is called an

admissible order.

2.2 UID Solution

Solving a UID means calculating an optimal strategy, formed by a set of step-policies and

a set of decision-policies. To organize the computations, we work with a secondary com-

putational structure called an S-DAG, which is a DAG representing relevant admissible

orderings (see Fig. 3).

A step-policy for a node N in an S-DAG is a rule that based on the current history

hst(N) specifies which of its children ch(N) to go to. As the policy needs not be determin-

istic, we formally define a step-policy for node N as a conditional probability distribution

P (ch(N) | hst(N)). A decision-policy for a decision node D in an S-DAG is a probability

distribution P (D | hst(D)). A strategy for an S-DAG consists of a step-policy for each

node and a decision policy for each decision.

An optimal strategy for an S-DAG is a strategy that maximizes the expected utility.

To be sure that an optimal strategy for a particular S-DAG is in fact a solution to the

decision problem specified by a UID the S-DAG must contain every ordering that can be

part of an optimal strategy. Such S-DAGs are called GS-DAGs (see Fig. 3).

Jensen and Vomlelová8 proposed to solve a UID by constructing a GS-DAG and to

6

CT

TBNA? TBNA

PET? PET

EBUS? EBUS

PET? PET

EBUS? EBUS

TBNA? TBNA

EBUS? EBUS

TBNA? TBNA

PET? PET

EBUS? EBUS

PET? PET

TBNA? TBNA

Tr

Figure 3: A GS-DAG for the UID of Fig. 2.

solve it through dynamic programming, eliminating the variables in reverse temporal

order. The evaluation starts by allocating the sets of probability and utility potentials

into the sink node and proceeds backwards by following the links in the S-DAG. Chance

and decision variables are eliminated as in variable-elimination for IDs:11 chance variables

are eliminated by sum-marginalization, and decision variables are eliminated by max-

marginalization. When the algorithm finishes the computations on a node then it transfers

the sets of potentials to its parents. When several branches meet, the probability tables

will be identical and the utility tables will be combined through maximization.

3 An anytime algorithm for unconstrained influence

diagrams

In general, the basic idea with an anytime algorithm is that time constraints may cause

the user to be unable to wait for the standard solution algorithm to finish. Thus, it should

be possible to stop the algorithm at any time, and the algorithm should then provide an

approximate solution. With this requirement we may settle for an algorithm that may

take longer than the standard algorithm, but which in the mean time can provide a better

7

approximate solution than the standard algorithm.

Unfortunately, the decision maker cannot accept an anytime strategy where the policy

for the first decision is completely uninformed. The decision maker needs to know what to

do first. Therefore, the aim of an anytime algorithm for solving UIDs (or decision graphs

in general) is to provide more and more informed advice on what to do first.

The standard evaluation algorithm for UIDs8 provides a strategy by solving the prob-

lem in reverse temporal order. If the algorithm is stopped prematurely, it can provide a

strategy, which consists of choosing completely randomly for the decisions which have not

yet been dealt with, and to follow the calculated optimal policies for the last decisions.

In this way, it can be said that you have an anytime algorithm: it provides a strategy

whenever it is stopped, the expected utility of the strategy never decreases over time,

and, eventually, the algorithm provides an optimal strategy. However, this is not satis-

factory. If the user stops the algorithm prematurely, it is because she needs to take the

first decision, but the algorithm does not give her any clue on what to do first.

To address the problem of providing informed advice on the first decision, we propose

a forward search performed in a decision tree16 representation of the UID. The tree is

built from the root towards the leaves. Our algorithm is inspired by AO* heuristic search

algorithms.13 The search process can be accommodated by considering the decision tree

as an AND/OR (AO) graph, where chance nodes are AND nodes, and decision nodes and

branch nodes are OR nodes. Thus, a solution is a hyper-graph G such that every node X

in G satisfies: (1) if X is an AND node, then all the children of X are in G; (2) otherwise

(X is an OR node) exactly one child of X is in G. We will use the terms decision tree

and AO graph interchangeably in this section.

The algorithm keeps a list of triggered nodes (the current leaves in the tree constructed

so far) as candidates for expansion. A triggered node X is expanded by adding its children

ch(X) to the tree and calculating the expected utility of the path from the root to X using

a heuristic function to estimate the MEU obtainable at the children of X. The heuristic

8

function described in Section 3.3 involves belief updating in the BN underlying the UID.

However, as our experiments show, although BN belief updating is a considerable part of

the time complexity of our algorithms, it does not cause any complexity problems.

The main results of our experiments can be summarized as follows. Dynamic pro-

gramming is faster than tree search when the purpose is to compute the optimal strategy

for the entire decision problem. However, the tree search algorithm fulfills the purpose for

which it is designed: it improves the recommendation for the first decisions of the prob-

lem when time increases, as opposed to dynamic programming, which provides completely

uninformed recommendations until it has terminated.

3.1 A Search Based Solution Algorithm

A UID can be converted into a decision tree, which in turn can be used as a computational

structure for solving the corresponding decision problem. A decision tree is a rooted tree in

which the leaves are utility nodes and the non-leaf nodes are either decision nodes (square

shaped) or chance nodes (circular shaped). The decisions on the possible orderings are

made explicit in the model by partitioning the decision nodes into either ordinary decisions

or branching point decisions.

The past of a node X, denoted by past(X), is the configuration specified by the labels

associated with the arcs on the path from the root to X; if X is a value node then past(X)

is called a scenario. The decision tree represents each scenario in the decision problem

explicitly; hence the size of the tree can grow exponentially in the number of variables.

The size can, however, be reduced by collapsing identical sub-trees, a procedure also

known as coalescence.14

The quantitative part of the decision tree consists of probabilities and utilities. Each

arc from a chance node A is associated with a probability P (A = a | past(A)), where

A = a is the label of the arc. The probabilities can be found from the underlying

Bayesian network model encoded by the UID. With each value node V in the decision

9

tree, we associate the utility ψ(past(V)) of the scenario past(V).

Instead of building the decision tree in full and solving it using the “average-out and

fold-back” algorithm,16 we propose to build the tree from the root toward the leaves. A

heuristic function h should provide an estimate of the maximum expected utility (MEU)

obtainable at every node in the decision tree. Thus, at any point in time we have a partial

decision tree in which the heuristic can be used to estimate the MEU at the leaf nodes.

These estimates can in turn be propagated upward in the tree giving an estimate of the

MEU of the nodes in the explored part of the tree, and in particular, an estimate of the

optimal policies for the decision nodes in this part.

A collection of optimal policies for a subset of the decision nodes is called a partial

strategy ∆′, and a partial strategy based on a heuristic function is called a partial heuristic

strategy ∆̂′. Clearly, the better the heuristic function is at estimating the MEU of the

triggered nodes in the partial decision tree the closer ∆̂′ will be at ∆′. The uniform

extension of a partial strategy S is a full strategy obtained by assigning random policies

to the decision nodes in the unexplored part of the tree.

3.2 Performing the Search

The search/construction of the coalesced decision tree starts with the tree consisting of

a single root node. From this the method iteratively expands a node consistent with the

UID specification.

When a node is expanded, its outgoing links are added to the decision tree as well as

any successor node not already in the tree; the node to be expanded is always selected

among the triggered nodes/leaves. When the new nodes are triggered, the expanded node

is removed from the triggered set. When a node is added to the decision tree, a heuristic

estimate of the MEU for that node is calculated. The values are propagated upwards,

thereby possibly updating the current partial heuristic strategy.

The choice of which node to expand is non-deterministic. We have experimented with

10

four selection schemes and we eventually selected the one providing the best results: to

expand a node of the lowest depth, i.e., perform a breadth-first search.

In summary, a triggered node X at the lowest depth is selected for expansion, and a

heuristic function is used to estimate the MEU of all triggered nodes, i.e., the leaves in

the partial decision tree. Thus, at any time during the search we have a partial decision

tree for which a heuristic based strategy can be computed.

Algorithm 1 presents the pseudo-code for the basic search procedure. The algorithm

maintains a priority list, called triggered, where nodes are ordered by increasing depth in

the decision tree. We denote with reachable the set of nodes in the decision tree formed by

the root node and its descendants in the partial solution. The set of reachable nodes can

change as a result of the corresponding updating procedures. The list solved contains all

the nodes whose exact MEU value has been computed. The calculation of the heuristics

in Line 7 and the process of updating upwards in the tree in Line 9 are explained in

Section 3.3.

Algorithm 1 Search of the optimal strategy

1: Initialize triggered to the source node
2: while triggered ∩ reachable 6= ∅ do
3: X := Extract the first node from triggered that is in reachable
4: if X /∈ solved then
5: Create successors of X (if necessary) and add links from X
6: for all newly created successors W do
7: CalculateHeuristics(W) (see Algorithm 2)
8: Add W to triggered
9: UpdateUpwards(X) (see Algorithm 3)

3.3 Selecting a Heuristic Function

The choice of heuristic function not only determines the policies being computed, but it

may in fact also be used to prune irrelevant parts of the tree thereby reducing complexity.

We denote with MEU(X) the MEU of the node X in the decision tree, calculated when

the sub-tree defined by X has been explored; we will omit the argument X from MEU(X)

11

when it is clear from the context. A special class of heuristic functions are the so-called

admissible heuristic functions.

3.3.1 An Admissible Heuristic

A heuristic function h is admissible if h(X) ≥ MEU(X), for any node X in the decision

tree. An admissible heuristic can be exploited during the search: Consider a decision

node with two children X and Y . If the sub-tree defined by X has been explored and

h(Y) ≤ MEU(X), then we need not explore the sub-tree rooted at Y .

Obviously, we would like the heuristic function h to define a tight upper bound on the

expected utility, and relative to the computational complexity of solving the decision tree

we would also like for h to be easy to compute.

A possible admissible heuristic function could be

hU(X) = max
l∈L

ψ(path(X, l)), (1)

where L is the set of leaf nodes in the sub-tree rooted at X and ψ(path(X, l)) is the sum

of the utilities associated with l and the path from X to l. Heuristic hU can be efficiently

calculated by max-marginalizing out the variables appearing in the domains of the utility

potentials.

Unfortunately, preliminary experiments have shown that the estimation given by hU

can be very far from the MEU. For certain UIDs the estimated optimal policy for the first

decision failed to stabilize over time, and in fact a random policy would on average have

provided a similar solution in terms of expected utility. Since we have not been able to

define an alternative computationally efficient admissible heuristic, we have instead been

looking for a nonadmissible heuristic.

12

3.3.2 A Nonadmissible Heuristic

The heuristic hU yields a very loose bound on the expected utility. However, since it

provides an upper bound, we can combine it with a lower bound to derive a good approx-

imation of the expected utility.

As a lower bound, we use the expected utility of the uniform extension of the current

partial heuristic strategy. This heuristic can be efficiently calculated by sum-marginalizing

out the variables in the utility and probability potentials.

If we denote the lower bound heuristic by hL, then we have that if all the variables in

the future of nodeX, denoted by future(X), are chance variables, then hL(X) = MEU(X).

Furthermore, when the number of decision nodes in future(X) increases the difference

MEU(X)− hL(X) will also increase. The opposite holds for the heuristic hU(X).

In order to derive a heuristic closer to MEU(X), we define the non-admissible heuristic

h as a weighted linear combination of hL and hU :

h(X) = wL(X)hL(X) + wU(X)hU(X), (2)

where wL(X) = α(X) · kX · c(X) and wU(X) = α(X) · d(X). Here c(X) and d(X) are the

number of chance and decision nodes in future(X), respectively, and α(X) is a normalizing

factor ensuring wL(X) + wU(X) = 1. By varying the parameter kX between 0 and +∞,

you can achieve any desired mixture of conservatism and optimism as defined by the two

heuristics.

3.4 Heuristic algorithms

We have two solution algorithms: breadth first search with admissible heuristic (BF-A)

and with non-admissible heuristic (BF-N). We assume that both algorithms use the same

data structures for storing the heuristic values of each node. So, in both algorithms each

node X has associated three heuristic values: hL(X), hU(X) and h(X). Although an

13

implementation of BF-A would only need to store two values, we assume it also stores

the three heuristic values because that allows using the same pseudo-code for BF-A and

BF-N. Algorithm 2 describes the pseudo-code for computing the heuristics for a node X.

At the end of its computations, Algorithm 2 also adds X to the list solved when it detects

that no further exploration is necessary at the sub-tree rooted at X.

Algorithm 2 CalculateHeuristics

Require: A node X of the search tree and an algorithm γ (“BF-A” or “BF-N”)
Ensure: Calculates the values of hL, hU and h for X, and considers adding X to solved

1: c := number of chance nodes in future(X)
2: d := number of decisions in future(X)
3: Calculate hU as in Equation 1
4: if γ =“BF-A” then
5: h := hU
6: if c = 0 then
7: hL := hU
8: else
9: hL := 0

10: else
11: Calculate hL and h as in Section 3.3.2
12: if c = 0 or (d = 0 and γ =“BF-N”) then
13: Add X to solved

Algorithm 3 describes the procedure for propagating any change in the heuristic values

of a node X upwards in the tree. It updates the heuristic values for X based on the

heuristic values of its children and using the standard algorithm for decision trees.16

Thus, if X is a chance node, then it calculates a weighted sum of the heuristics for the

children of X using the probabilities as weights. If X is a decision, then the algorithm

maximizes over the heuristics for the nodes in ch(X).

If the value of some heuristic in X has changed, then Algorithm 3 attempts to prune

any children of X that cannot improve the current best solution. In this way, a child W

of a node X can be pruned if hL(X) > hU(W), i.e., the call isPrunable(X,W) in Line 8

returns true.

14

Algorithm 3 UpdateUpwards

Require: A node X of the search tree
Ensure: Updates heuristics for X, prunes children if possible, and propagates changes

upwards
1: for all heuristic f ∈ {hL, hU , h} do
2: if X is a chance node then
3: f(X) =

∑
W∈ch(X) P (W |X) · f(W)

4: else
5: f(X) = maxW∈ch(X)f(W)
6: if some heuristic in X has changed then
7: for all W ∈ ch(X) do
8: if isPrunable(X,W) then
9: Remove the link X → W

10: if ch(X) ⊂ solved then
11: Add X to solved
12: for all W ∈ parents(X) do
13: UpdateUpwards(W)

3.5 Example

Consider the UID of Fig. 4a, where the domains of the variables X and Y are {a, ¬a},

and the domains of D and E are {yes, no}. Let P (X = a|D = yes) = P (X = ¬a|D =

no) = 0.6, and P (Y = a |E = yes) = P (Y = ¬a |E = no) = 0.9. Let the utility function

of U be:

ψU(d, x, e, y) =

10.0 , if x = y ∧ (d = yes ∨ e = yes)

0.0 , otherwise.

Let the cost function attached to D, ψD(d), be 1 if d = yes, and −1 otherwise. Let the

cost function attached to E be ψE(e) = 0.

The GSDAG of the UID of Fig. 4a is shown in Fig. 4b. Assume that we execute the

algorithm BF-N, with kV = 2.0 for every node V . The algorithm starts by exploring the

AO graph by following the GSDAG. When the two children of Source in the GSDAG (D

and E) have been expanded, we have the AO graph of Fig. 5. Root variable OD represents

a branch point to decide which decision to make first: D or E. Each leaf node in the AO

15

D X

E Y

U

(a)

Sink

X

Y

D

EX

YE

D

Source Sink

(b)

Figure 4: Small UID example (a) and its GS-DAG (b).

OD

E

hL = 2.1
hU = 11

h = 3.9

hL = 5
hU = 11

h = 6.2

yes no

D

hL = 1.1
hU = 9

h = 2.7

hL = 6
hU = 11

h = 7

yes no

hL = 6
hU = 11
h = 7

hL = 5
hU = 11
h = 6.2

hL = 6
hU = 11
h = 7

Figure 5: AO graph after expanding the two children from the root: the nodes D and E.

graph is represented by an orange-shaded rectangle containing the lower and the upper

bounds, hL and hU as well as the heuristic h calculated as in Equation 2. Each inner node

is associated with its heuristic values, hL, hU , and h, calculated from the corresponding

values associated with its children. Links starting at chance or decision nodes are labeled

with the corresponding states; links from chance nodes are additionally labeled with the

associated probability (see Fig. 6). Links colored in red indicate the partial solutions to

the problem; thicker red links represent the partial optimal strategy at that moment of

the evaluation.

When the algorithm stops, we obtain the AO graph of Fig. 6; when the heuristic

values, hL, hU and h, of a node X are equal, then we just denoted these three heuristics

as h. Pruned arcs are indicated as dashed lines. The algorithm did not have to expand all

the nodes in order to obtain an optimal strategy because it took advantage of the pruning

mechanisms. For example, consider the node labeled with X in Fig. 6 given by the path

OD = D, D = no; its upper bound value is lower than the lower bound of its parent. In

this case, the sub-tree rooted at X can be pruned as exploration of it would not improve

16

OD

E

Y

D

h = −1h = 5

yes no

D

h = −1h = 7

yes no

a, 0.1 ¬a, 0.9

Y

D

h = 5h = 5

yes no

D

h = 3h = 7

yes no

a, 0.9 ¬a, 0.1

yes no

D

X

hL = −0.5
hU = 9

h = 2.7

hL = 3.5
hU = 9

h = 5.3

a, 0.4 ¬a, 0.6

X

E

h = 10h = 2

yes no

E

h = 2h = 10

yes no

a, 0.6 ¬a, 0.4

yes no

h = 10 h = 10

h = 10

hL = 1.1
hU = 9
h = 3.7

h = 10

h = 7 h = 5

h = 6.8

h = 7 h = 5

h = 5.2

h = 6.8

h = 10

Figure 6: Final AO graph with the solution to the UID example.

the heuristic values of its parent node D. We also note that the algorithm expanded 4

levels of nodes, and did thus avoid expanding the last level of the complete decision tree.

3.6 Updating k

In order to choose a good value for kX in BF-N algorithm, we propose to update it

automatically as the tree is expanded. The procedure of updating upwards in the tree

(Algorithm 3) is based on the expectation that the heuristic is more precise the closer we

get to the leaves. Thus, when h(X) has been updated, treating ÊU(X) = h(X) as an

accurate estimate of the expected utility for X we calculate a new value for kX :

kX :=
(ÊU(X)− h0U(X))d(X)

(h0L(X)− ÊU(X))c(X)
.

where h0L(X) and h0U(X) are the initial values of hL and hU in X when this was created.

Note that kX will always be non-negative. Only the nodes in triggered ∩ ch(X) will use

kX when they are selected for expansion; thus, when X has no triggered children then

updating k in X would have no effect.

17

4 Framework for analyzing performance

We describe here a framework for analyzing the performance of anytime algorithms when

providing informed advice on the first decisions. We use as baseline the uniform extension

of the strategy, and put the anytime strategy in relation to the difference in value between

the uniform extension and the optimal strategy. We advocate the use of the uniform

extension as baseline because it is a strategy that the decision maker always has available.

We study the performance for the first n decisions, where n ∈ N. We have chosen

a value of n greater than 1 because the initial decision in the UIDs generated is always

to choose the first decision among a set of unordered decisions, but we also wanted to

study the selection of the decision option for the decision initially chosen. Moreover, it

also allows studying the scenario in which several decisions have to be made quickly. Note

that a partial strategy can at any time be extended to a full strategy ∆̂(t) by assigning

random policies to the decision nodes in the unexplored part of the tree.

4.1 Evaluation measures

The necessity of having a full strategy covering all decisions can be relaxed in some

situations. The decision maker may need the help of an anytime algorithm to obtain a

prescription for only the first n decisions in the decision tree2. The remaining part of

the decision problem may be evaluated by using dynamic programming. This anytime

strategy, only requiring prescriptions for the first n decisions, is denoted ∆̂n(t).

Expected utility of the anytime strategy The goodness of an anytime algorithm

can be measured by considering the expected utility (EU) of the strategy found. The

results for ∆̂n(t), for varying n, will generally be different, but two interesting properties

relate them. If MEU is the maximum expected utility of the UID and m is the maximum

2We talk about number of decisions in the decision tree instead of referring to the UID. This is because
the decision nodes in the decision tree not only represent decision nodes in the UID but also branching
points.

18

number of decisions in a path from the root to a leaf in the decision tree, then, for every

instant time t, we have that MEU = EU(∆̂0(t)) and EU(∆̂i−1(t)) ≥ EU(∆̂i(t)), for each

i ≤ m. We will for convenience denote EU(∆̂i(t)) by EU i(t).

Expected number of correct decisions We can measure the goodness of the decisions

made at any level of the decision tree by comparing them with those prescribed under the

optimal strategy. Given that all the variables on the same level of the decision tree are

of the same kind, we define a layer as a level of the decision tree formed by the decisions

on the same level. Let n be a natural number between 1 and the maximum number of

decisions appearing on a path from the root to a leaf in the decision tree. Let t be an

instant time and let Ln(t) be the set of pairs (X, x), where X is a decision node at the n-th

layer at time t and x is the decision option selected at X at time t. We say the pair (X, x)

is correct at time t if the selected decision option x is optimal in the scenario defined by

past(X). Let Cn(t) be the subset of pairs of Ln(t) that are correct at t. The expected

proportion of correct decisions at the n-th layer at time t, denoted by CorrectAtLayern(t),

is defined as:

CorrectAtLayern(t) =
|Cn(t)|
|Ln(t)|

. (3)

The expected number of correct decisions in the first n layers, denoted by CorrectFirstLayersn(t),

is defined as:

CorrectFirstLayersn(t) =
n∑
i=1

CorrectAtLayeri(t) .

CorrectFirstLayersn(t) measures the expected number of correct decisions by following a

single path through the first n layers of decisions.

4.2 Normalization of the measures

We want to study whether our anytime algorithm provides a policy for the first decision(s)

that is better than the one proposed by the DP algorithm, which is assumed to be random

19

for the first decisions. However, summarizing the experimental results requires combining

the results of all the UIDs evaluated. This combination requires a normalization of the

evaluations of all UIDs as well as a normalization of the time used by the algorithm. For

the latter part of the normalization, this will be achieved by using DP as reference point.

Each normalized measure is represented in a two-axis graph. The X-axis represents

the time of the evaluation, interpreted as the fraction of the time spent by DP. The Y -

axis represents the percentage of improvement (in the range from 0 to 1) provided by the

anytime strategy compared to a uniform strategy. By normalizing the results, random

policies are given the value 0 while an optimal strategy is given the value 1.

We assume that the evaluation of a UID r with an algorithm γ begins at time 0 and

is stopped at time τγ,r. We also assume that DP is always stopped when its evaluation

finishes. Let fγ,r(t) be a function over time, corresponding to the result of evaluating UID

r with algorithm γ. The normalization of fγ,r(t), denoted by f ′γ,r(t), is defined by:

f ′γ,r(t) :=
fγ,r(t · τDP,r)− fDP,r(0)

fDP,r(τDP,r)− fDP,r(0)
. (4)

Note that f ′DP,r(0) = 0 and f ′DP,r(1) = 1. When we have a set of UIDs I, a summary

function f ′′γ (t) is calculated by taking the mean of f ′γ,r(t) over all the UIDs r ∈ I.

For example, for CorrectFirstLayers3(t), if we assume that all the decisions are binary,

a result of 0 in the normalized score is achieved when the expected number of correct

decisions in the first three layers is 3/2. This is the result we should expect from having

random policies.

5 Experiments

We have performed a series of experiments for analyzing the performance of three anytime

algorithms: the dynamic programming-based (DP) and a breadth first search with both an

admissible heuristic (BF-A) and a non-admissible heuristic (BF-N). The first problem we

20

faced is that we do not have real-world examples of UIDs and the probabilistic graphical

models repositories available on the Internet do not contain UIDs. For this reason, we have

randomly generated UIDs. We have solved the UIDs generated with exact algorithms to

obtain exact solutions and to compare them with the solutions returned by the proposed

algorithms.

5.1 Generation of UIDs

Rather than generating completely random UIDs,19 we follow a different approach and

generated models that share characteristics with structures we would expect to find in

real-world domains.

The generation of UIDs was divided into two phases. First, we obtained the structure

of UIDs (arcs and nodes, including their type). Second, we generated the probability and

utility potentials.

Each UID structure is created by instantiating a parameterized template described

by a set of parameters. Templates 1 and 4 (see Fig. 7a and Fig. 7d) are instantiated

by parameter n, the number of decision nodes. Template 2 (Fig. 7b) is instantiated by

two parameters: n1, the number of ancestor decision nodes of O0; and n2, the number

of decision nodes that are not ancestors of O0. Template 3 (Fig. 7c) is instantiated by

two parameters: n1, the numbers of ancestor decision nodes of H; and n2, the number of

decision nodes different from D0 that are not ancestors of H.

The structure of the templates represent patterns that are likely to be found in real

problems with a partial order of decisions. For example, the UID example of Template

3 (Fig. 7c) corresponds to a medical decision problem, where the unobservable variable

H represents a disease, D1 and D2 indicate two vaccinations for H, and D3 and D4

represents medical tests. Variables O1 and O2 represent the body’s reaction to each

vaccination; variables O3 and O4 represents the tests results. Decision D0 represents the

decision about the treatment.

21

D1 O1

D2 O2

D3 O3

U

(a) Template 1.

O0

O1D1

U1

O2D2

U2

O3

O4

D3

D4

U0

(b) Template 2.

H

O1D1

U1

O2D2

U2

O3

O4

D3

D4

U0

D0

U

(c) Template 3.

D1 O1

D2 O2

D3 O3

H U

(d) Template 4.

Figure 7: Template examples.

The values assigned to the template parameters influence the complexity of the eval-

uation. One measure of the complexity of the evaluation of a UID is the number of paths

in the GS-DAG. In general, the number of paths in the GS-DAG for UIDs generated

according to templates 1 and 4 is n!, while in the case of Templates 2 and 3 it is n1! · n2!,

with n, n1 and n2 being the instantiation parameters.

After creating the structure of a UID, we randomly generated a probability table for

each chance node (both observables and non-observables) and a utility table for each

utility node.

22

Table 1: Summary of EU i(t) and CorrectFirstLayersi(t) (short-hand CFL) for the BF-A
algorithm (left columns) and for the BF-N algorithm (right columns).

BF-A BF-N

25 % 50 % 75 % 100 % 25 % 50 % 75 % 100 %
EU1(t) -3 -4 -3 5 54 61 56 59
EU2(t) 43 65 75 72 64 75 89 94
EU3(t) 36 50 59 60 61 72 83 87

CFL1(t) 1 -2 -2 3 48 52 48 53
CFL2(t) 13 18 21 24 46 54 56 61
CFL3(t) 9 12 15 17 34 41 44 49

5.2 Experimental results

We have created UIDs by varying the instantiating template parameters. In Template 1,

n has been varied from 3 to 6. In Templates 2 and 3, we have set n2 equal to n1 and have

varied n1 from 2 to 4. In Template 4, we have varied n from 3 to 5. For each UID graph,

we have randomly created 50 different realizations by randomly generating the numbers

in the probability and utility potentials. This amounts to a total of 650 UIDs.

The algorithms were implemented in.1 The experiments were conducted on a PC with

Intel Core 2 CPU @ 2.4 GHz with 2 GB of memory and using Java 6.0.

The results of the experiments are summarized in Table 1, EU i(t) and CorrectFirstLayersi(t)

correspond to the two measures described in Section 4.1. In particular, CorrectFirstLayers1(t)

denotes the frequency of selecting the best initial decision (i.e., a branching point decision).

Each cell represents the percentage of improvement of the anytime algorithm compared

to a uniform strategy.

For example, CorrectFirstLayers3(t) accumulates the number of correct decisions at the

first 3 decision levels in the tree. Consider now the table by applying the inverse normal-

ization function for, say, the cell defined by column 25% and row CorrectFirstLayers3(t)

in Table 1 and assume for simplicity that all decisions are binary, including the branch-

ing points.3 The percentage value, 34, in the cell is the result of the normalization

3The assumption that all decisions are binary is made to simplify the explanation and does, in general,
not reflect the UIDs that have been generated for the experiments.

23

3/2+(3−3/2)×34/100 = 2.01 (see Equation 4). Thus, on average, 2.01 of the first three

decisions on any single path in the tree will be selected correctly by BF-N using only 25

percent of the time spent by DP.

Fixing the time instant in Table 1, we can observe the tendency of CorrectFirstLayersi(t)

and EU i(t) when i increases. As BF-A and BF-N perform a breadth first search, we would

expect that the lower the i the better the values in the table because the algorithm may

not have enough time for computing the policies for the higher levels in the tree.

However, an increase in the value from CorrectFirstLayers1(t) to CorrectFirstLayers2(t)

contradicts the tendency. The first layer in the UIDs generated corresponds to a branching

point for choosing the best decision among typically more than two unordered decisions,

while the second layer corresponds to choosing the decision option of a dichotomous de-

cision. Thus, choosing the best decision at a branching point is therefore a more difficult

problem than choosing the decision option.

We can extract three main conclusions from Table 1. First, the results of BF-A are

not much better than using random policies, as many of the values in the table are close

to 0 or even negative. Second, BF-N outperforms BF-A in all the recorded measures.

Third, the algorithm BF-N improves over time w.r.t. all the recorded measures and it

always gives much better results than using a random strategy.

Fig. 8 exemplifies the behavior of the algorithms. In Fig. 8a we can see how BF-A

does not give any clue about the policies for the first two decisions during the entire time

spent by the DP evaluation and therefore the partial strategy is very close to the uniform

strategy. Fig. 8b shows how DP fails to give informed advice on the policies for the first

two decisions until 50 percent of the time has passed. In contrast, the strategy returned

by BF-N for the first two layers improves over the time and, although DP computes the

optimal strategy faster than BF-N, when DP stops the approximate strategy is near-to-

optimal.

24

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

F
re

qu
en

cy

BF−A
DP

(a) Comparison of CorrectFirstLayers1(t) be-
tween DP and BF-A.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

E
xp

ec
te

d
ut

ili
ty

BF−N
DP

(b) Comparison of EU2(t) between DP and BF-N.

Figure 8: Examples of the algorithms performance over time.

6 Related work

Many authors have investigated the problem of finding a trade-off between the computa-

tional effort of evaluating a decision model and the quality of the solution (see, e.g.,4,5).

However, previous works do not address the problem of finding a qualified anytime policy

for the first decision of the decision problem.

Garcia-Sanchez and Druzdzel2 proposed a Monte-Carlo algorithm that, by using the

same samples to rank the decision options, could reduce the variance in estimation of

the expected utility. Their concerns about the ranking of the decision options lead us to

define the measure CorrectAtLayer1(t) and subsequently to generalize it for any layer in

the decision tree. However, Garcia-Sanchez and Druzdzel2 did not consider the anytime

aspect of the problem and time was therefore not considered a factor when the performance

of their algorithm was analyzed.

Several authors have used search of the AO graph for solving an ID.12,15,20 Instead of

using an alternate sequence of AND and OR layers as Qi and Poole,15 we follow the same

approach as Yuan et al.20 and have a level in the tree for each variable in the UID. This

allows us to more efficiently make upwards updates of the heuristic estimates in the tree.

25

Contrary to Qi and Poole15 as well as Yuan et al.20 we use a non-admissible heuristic for

guiding the search, while at the same time maintaining an upper bound on the expected

utility in order be able to prune the tree. Finally, our method performs a breadth-first

search, in contrast to Marinescu12 and Yuan et al.,20 in order to explore all the branches

in the first levels of the tree at an early stage.

7 Conclusions

We have proposed an algorithm that addresses a problem that we believe has previous been

overlooked by proposals of anytime algorithms for solving IDs and UIDs: provide informed

anytime advice for the first decisions in the decision problem, thus accommodating the

immediate needs of the decision maker. We have proposed a heuristic guided search-based

algorithm as well as a framework for analyzing the performance of anytime algorithms for

decision models like IDs and UIDs.

From the experimental results we can draw two main conclusions related to the pro-

posed algorithm. Firstly, selecting a good heuristic function is decisive for achieving good

performance; employing a simple admissible heuristic offers a response that is not much

better than using a uniform strategy. Secondly, the proposed anytime algorithm imple-

menting a non-admissible heuristic balancing a lower and upper bound of the expected

utility has demonstrated a significant improvement in the anytime recommendations for

the first decisions of the problem, and its prescriptions are considerably better than using

a uniform strategy.

Acknowledgments

The first author has been supported by the Department of Education of the autonomous

region of Madrid and the European Social Fund (ESF). We would like to thank the Ma-

chine Intelligence group at the Department of Computer Sciences at Aalborg University

26

for fruitful discussions, and Marta Vomlelová for giving us access to her UID implemen-

tation.

References

[1] Elvira Consortium. Elvira: An environment for creating and using probabilistic

graphical models. In J. A. Gámez and A. Salmerón, editors, Proceedings of the First

European Workshop on Probabilistic Graphical Models (PGM’02), pages 1–11, 2002.

[2] D. Garcia-Sánchez and M. J. Druzdzel. An efficient exhaustive anytime sampling

algorithm for influence diagrams. In A. Salmerón and J. A. Gámez, editors, Advances

in Probabilistic Graphical Models, pages 255–273. Springer, Berlin, Germany, 2007.

[3] M. Gómez, C. Bielza, J. A. Fernández del Pozo, and S. Ŕıos-Insua. A graphical

decision-theoretic model for neonatal jaundice. Medical Decision Making, 27:250–

265, 2007.

[4] M. C. Horsch and D. Poole. An anytime algorithm for decision making under uncer-

tainty. In G. Cooper and S. Moral, editors, Proceedings of the Fourteenth Conference

on Uncertainty in Artificial Intelligence (UAI’98), pages 246–255, San Francisco,

CA, 1998. Morgan Kauffmann.

[5] E. Horvitz and A. Seiver. Time-critical action: Representations and application.

In D. Geiger and P. Shenoy, editors, Proceedings of the Thirteenth Conference on

Uncertainty in Artificial Intelligence (UAI’97), pages 250–257, San Francisco, CA,

1997. Morgan Kauffmann.

[6] R. A. Howard and J. E. Matheson. Influence diagrams. In R. A. Howard and J. E.

Matheson, editors, Readings on the Principles and Applications of Decision Analysis,

pages 719–762. Strategic Decisions Group, Menlo Park, CA, 1984.

27

[7] F. Jensen, F. V. Jensen, and S. L. Dittmer. From influence diagrams to junction trees.

In R. L. de Mantaras and D. Poole, editors, Proceedings of the Tenth Conference on

Uncertainty in Artificial Intelligence (UAI’94), pages 367–373, San Francisco, CA,

1994. Morgan Kauffmann.

[8] F. V. Jensen and M. Vomlelová. Unconstrained influence diagrams. In A. Darwiche

and N. Friedman, editors, Proceedings of the Eighteenth Conference on Uncertainty

in Artificial Intelligence (UAI’02), pages 234–241, San Francisco, CA, 2002. Morgan

Kauffmann.

[9] M. Luque. Probabilistic Graphical Models for Decision Making in Medicine. PhD

thesis, UNED, Madrid, 2009.

[10] M. Luque, F. J. Dı́ez, and C. Disdier. A decision support system for the mediasti-

nal staging of non-small cell lung cancer. In A. Nicholson, editor, Proceedings of

the Ninth UAI Bayesian Modelling Applications Workshop (BMAW’11), Barcelona,

Spain, 2011.

[11] A. Madsen and F. V. Jensen. Lazy evaluation of symmetric Bayesian decision prob-

lems. In K. Laskey and H. Prade, editors, Proceedings of the Fifteenth Conference on

Uncertainty in Artificial Intelligence (UAI’99), pages 382–390, San Francisco, CA,

1999. Morgan Kauffmann.

[12] R. Marinescu. A new approach to influence diagrams evaluation. In M. Bramer and

R. Ellis and M. Petridis, editor, Research and Development in Intelligent Systems

XXVI, pages 107–120. Springer London, 2010.

[13] N. J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, CA, 1980.

[14] S. M. Olmsted. On Representing and Solving Decision Problems. PhD thesis, Dept.

Engineering-Economic Systems, Stanford University, CA, 1983.

28

[15] R. Qi and D. Poole. A new method for influence diagram evaluation. Computational

Intelligence, 11:498–528, 1995.

[16] H. Raiffa and R.O. Schlaifer. Applied Statistical Decision Theory. John Wiley &

Sons, Cambridge, MA, 1961.

[17] R. D. Shachter. Evaluating influence diagrams. Operations Research, 34:871–882,

1986.

[18] P. P. Shenoy. Valuation based systems for Bayesian decision analysis. Operations

Research, 40:463–484, 1992.

[19] M. Vomlelová. Unconstrained influence diagrams - experiments and heuristics. In

Sixth Workshop on Uncertainty Processing (WUPES’2003), Hejnice, Czech Republic,

2003.

[20] C. Yuan, X. Wu, and E. Hansen. Solving multistage influence diagrams using branch-

and-bound search. In P. Grunwald and P. Spirtes, editors, Proceedings of the Twenty-

sixth Conference on Uncertainty in Artificial Intelligence (UAI’10), pages 691–700,

Corvallis, OR, 2010. AUAI Press.

29

