40,008 research outputs found

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Do optimization methods in deep learning applications matter?

    Get PDF
    With advances in deep learning, exponential data growth and increasing model complexity, developing efficient optimization methods are attracting much research attention. Several implementations favor the use of Conjugate Gradient (CG) and Stochastic Gradient Descent (SGD) as being practical and elegant solutions to achieve quick convergence, however, these optimization processes also present many limitations in learning across deep learning applications. Recent research is exploring higher-order optimization functions as better approaches, but these present very complex computational challenges for practical use. Comparing first and higher-order optimization functions, in this paper, our experiments reveal that Levemberg-Marquardt (LM) significantly supersedes optimal convergence but suffers from very large processing time increasing the training complexity of both, classification and reinforcement learning problems. Our experiments compare off-the-shelf optimization functions(CG, SGD, LM and L-BFGS) in standard CIFAR, MNIST, CartPole and FlappyBird experiments.The paper presents arguments on which optimization functions to use and further, which functions would benefit from parallelization efforts to improve pretraining time and learning rate convergence

    Learning-based ship design optimization approach

    Get PDF
    With the development of computer applications in ship design, optimization, as a powerful approach, has been widely used in the design and analysis process. However, the running time, which often varies from several weeks to months in the current computing environment, has been a bottleneck problem for optimization applications, particularly in the structural design of ships. To speed up the optimization process and adjust the complex design environment, ship designers usually rely on their personal experience to assist the design work. However, traditional experience, which largely depends on the designer’s personal skills, often makes the design quality very sensitive to the experience and decreases the robustness of the final design. This paper proposes a new machine-learning-based ship design optimization approach, which uses machine learning as an effective tool to give direction to optimization and improves the adaptability of optimization to the dynamic design environment. The natural human learning process is introduced into the optimization procedure to improve the efficiency of the algorithm. Q-learning, as an approach of reinforcement learning, is utilized to realize the learning function in the optimization process. The multi-objective particle swarm optimization method, multiagent system, and CAE software are used to build an integrated optimization system. A bulk carrier structural design optimization was performed as a case study to evaluate the suitability of this method for real-world application
    • …
    corecore