17 research outputs found

    Improving the efficiency of the LDPC code-based McEliece cryptosystem through irregular codes

    Full text link
    We consider the framework of the McEliece cryptosystem based on LDPC codes, which is a promising post-quantum alternative to classical public key cryptosystems. The use of LDPC codes in this context allows to achieve good security levels with very compact keys, which is an important advantage over the classical McEliece cryptosystem based on Goppa codes. However, only regular LDPC codes have been considered up to now, while some further improvement can be achieved by using irregular LDPC codes, which are known to achieve better error correction performance than regular LDPC codes. This is shown in this paper, for the first time at our knowledge. The possible use of irregular transformation matrices is also investigated, which further increases the efficiency of the system, especially in regard to the public key size.Comment: 6 pages, 3 figures, presented at ISCC 201

    Optimization of the parity-check matrix density in QC-LDPC code-based McEliece cryptosystems

    Full text link
    Low-density parity-check (LDPC) codes are one of the most promising families of codes to replace the Goppa codes originally used in the McEliece cryptosystem. In fact, it has been shown that by using quasi-cyclic low-density parity-check (QC-LDPC) codes in this system, drastic reductions in the public key size can be achieved, while maintaining fixed security levels. Recently, some proposals have appeared in the literature using codes with denser parity-check matrices, named moderate-density parity-check (MDPC) codes. However, the density of the parity-check matrices to be used in QC-LDPC code-based variants of the McEliece cryptosystem has never been optimized. This paper aims at filling such gap, by proposing a procedure for selecting the density of the private parity-check matrix, based on the security level and the decryption complexity. We provide some examples of the system parameters obtained through the proposed technique.Comment: 10 pages, 4 figures. To be presented at IEEE ICC 2013 - Workshop on Information Security over Noisy and Lossy Communication Systems. Copyright transferred to IEE

    The decoding failure probability of MDPC codes

    Get PDF
    Moderate Density Parity Check (MDPC) codes are defined here as codes which have a parity-check matrix whose row weight is O(n)O(\sqrt{n}) where nn is the length nn of the code. They can be decoded like LDPC codes but they decode much less errors than LDPC codes: the number of errors they can decode in this case is of order Θ(n)\Theta(\sqrt{n}). Despite this fact they have been proved very useful in cryptography for devising key exchange mechanisms. They have also been proposed in McEliece type cryptosystems. However in this case, the parameters that have been proposed in \cite{MTSB13} were broken in \cite{GJS16}. This attack exploits the fact that the decoding failure probability is non-negligible. We show here that this attack can be thwarted by choosing the parameters in a more conservative way. We first show that such codes can decode with a simple bit-flipping decoder any pattern of O(nloglognlogn)O\left(\frac{\sqrt{n} \log \log n}{\log n}\right) errors. This avoids the previous attack at the cost of significantly increasing the key size of the scheme. We then show that under a very reasonable assumption the decoding failure probability decays almost exponentially with the codelength with just two iterations of bit-flipping. With an additional assumption it has even been proved that it decays exponentially with an unbounded number of iterations and we show that in this case the increase of the key size which is required for resisting to the attack of \cite{GJS16} is only moderate

    Analysis of reaction and timing attacks against cryptosystems based on sparse parity-check codes

    Full text link
    In this paper we study reaction and timing attacks against cryptosystems based on sparse parity-check codes, which encompass low-density parity-check (LDPC) codes and moderate-density parity-check (MDPC) codes. We show that the feasibility of these attacks is not strictly associated to the quasi-cyclic (QC) structure of the code but is related to the intrinsically probabilistic decoding of any sparse parity-check code. So, these attacks not only work against QC codes, but can be generalized to broader classes of codes. We provide a novel algorithm that, in the case of a QC code, allows recovering a larger amount of information than that retrievable through existing attacks and we use this algorithm to characterize new side-channel information leakages. We devise a theoretical model for the decoder that describes and justifies our results. Numerical simulations are provided that confirm the effectiveness of our approach

    Security and complexity of the McEliece cryptosystem based on QC-LDPC codes

    Full text link
    In the context of public key cryptography, the McEliece cryptosystem represents a very smart solution based on the hardness of the decoding problem, which is believed to be able to resist the advent of quantum computers. Despite this, the original McEliece cryptosystem, based on Goppa codes, has encountered limited interest in practical applications, partly because of some constraints imposed by this very special class of codes. We have recently introduced a variant of the McEliece cryptosystem including low-density parity-check codes, that are state-of-the-art codes, now used in many telecommunication standards and applications. In this paper, we discuss the possible use of a bit-flipping decoder in this context, which gives a significant advantage in terms of complexity. We also provide theoretical arguments and practical tools for estimating the trade-off between security and complexity, in such a way to give a simple procedure for the system design.Comment: 22 pages, 1 figure. This paper is a preprint of a paper accepted by IET Information Security and is subject to Institution of Engineering and Technology Copyright. When the final version is published, the copy of record will be available at IET Digital Librar

    Green Bitcoin: Global Sound Money

    Full text link
    Modern societies have adopted government-issued fiat currencies many of which exist today mainly in the form of digits in credit and bank accounts. Fiat currencies are controlled by central banks for economic stimulation and stabilization. Boom-and-bust cycles are created. The volatility of the cycle has become increasingly extreme. Social inequality due to the concentration of wealth is prevalent worldwide. As such, restoring sound money, which provides stored value over time, has become a pressing issue. Currently, cryptocurrencies such as Bitcoin are in their infancy and may someday qualify as sound money. Bitcoin today is considered as a digital asset for storing value. But Bitcoin has problems. The first issue of the current Bitcoin network is its high energy consumption consensus mechanism. The second is the cryptographic primitives which are unsafe against post-quantum (PQ) attacks. We aim to propose Green Bitcoin which addresses both issues. To save energy in consensus mechanism, we introduce a post-quantum secure (self-election) verifiable coin-toss function and novel PQ secure proof-of-computation primitives. It is expected to reduce the rate of energy consumption more than 90 percent of the current Bitcoin network. The elliptic curve cryptography will be replaced with PQ-safe versions. The Green Bitcoin protocol will help Bitcoin evolve into a post-quantum secure network.Comment: 16 page
    corecore