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The decoding failure probability of MDPC codes

Jean-Pierre Tillich ∗

January 11, 2018

Abstract

Moderate Density Parity Check (MDPC) codes are defined here as codes which have a
parity-check matrix whose row weight is of order the square root of the length n of the code.
They can be decoded like LDPC codes but they decode much less errors than LDPC codes:
the number of errors they can decode in this case is of order the square root of n. Despite this
fact they have been proved very useful in cryptography for devising key exchange mechanisms
[BGG+17]. They have also been proposed in McEliece type cryptosystems. However in this
case, the parameters that have been proposed in [MTSB13] were broken in [GJS16]. This
attack exploits the fact that the decoding failure probability is non-negligible. We show here
that this attack can be thwarted by choosing the parameters in a more conservative way.
We first show that such codes can decode with a simple bit-flipping decoder any pattern of

O
(√

n log logn
logn

)
errors. This avoids the previous attack at the cost of significantly increasing

the key size of the scheme. We then show that under a very reasonable assumptions the
error probability after decoding decays almost exponentially with the codelength with just
two iterations of bit-flipping. With an additional assumption it has even been proved that
it decays exponentially with an unbounded number of iterations and show that in this case
the increase of the key size which is required for resisting to the [GJS16] attack is only
moderate.

1 Introduction

Virtually all the public key cryptography used in practice today can be attacked in polynomial
time by a quantum computer [Sho94]. Even if such a quantum computer does not exist yet,
finding viable solutions which would be resistant to a quantum computer is expected to be a
lengthy process. This is one of the reasons why the NIST has recently launched a process for
standardizing public key cryptographic algorithms that would be safe against a quantum adver-
sary. Code-based cryptography is believed to be quantum resistant and is therefore considered as
a viable solution. The McEliece system [McE78] based on binary Goppa codes, which is almost
as old as RSA, is a public key cryptosystem that falls into this category. It has withstood all
cryptanalyses up to now. It is well known to provide extremely fast encryption and fast decryp-
tion [BS08, BCS13], but has large public keys, about 200 kilobytes for 128 bits of security and
slightly less than one megabyte for 256 bits of security [BLP08].

There have been many attempts to decrease the key size of this system. They are either
based on codes with a better error correction capacity such as generalized Reed-Solomon codes
[Nie86], algebraic geometry codes [JM96], a certain kind of non binary Goppa codes (called
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wild Goppa codes or wild Goppa codes incognito) [BLP10, BLP11], convolutional codes [LJ12,
GSJB14] or polar codes [SK14] or on more structured codes, such as codes with a non trivial
automorphism group; for instance quasi-cyclic codes [Gab05, BC07, BBC08, BCGO09, MTSB13]
or quasi–dyadic and quasi–monoidic Goppa codes [MB09, BLM11]. Using codes with better error
correction capacity reduces the key size because of the following phenomenon : the size of the
public key in a McEliece cryptosystem is generally the size needed to store a systematic generator
matrix of the code used in it, that is R(1 − R)n2 log2 q bits for a code of rate R and length n
over Fq. The attacks using generic decoding techniques [Ste88, BJMM12] have an exponential
complexity which is of the form eα(q,R)t where t is the number of errors that the code can correct.
The security of the cryptosystem is generally measured against this attack and a better error-
correction capacity implies a better dependency of the key size in terms of the complexity of the
generic decoding attack. With the second method, the key size is decreased directly because the
public generator matrix is a quasi–cyclic code for instance. When the circulant blocks that form
the generator matrix of the corresponding code are of size p this allows to decrease the key size
by a multiplicative factor p, whereas the best decoding on quasi-cyclic codes have roughly the
same complexity as the best generic decoding on unstructured codes.

However, it has turned out that most of the aforementioned schemes allowed key recovery
attacks that could not be mounted on the original Goppa codes [SS92, Wie10, MS07, FM08,
FOPT10, OTD10, CGG+14, LT13, CMCP14, COT14, FPdP14, COTG15, BCD+16]. But some
of them remain unbroken by direct key attacks, namely those relying on Moderate Density Parity
Check (MDPC) codes [MTSB13] and their cousins [BBC08], the original binary Goppa codes of
[McE78] and their non-binary variants as proposed in [BLP10, BLP11]. The family of Moderate
Density Parity Check codes (MDPC) codes is particularly interesting since (i) the decryption
algorithm is extremely simple and is based on a extremely simple bit flipping decoding algorithm,
(ii) direct attacks on key directly really amount to a problem of the same nature as decoding
a linear code. This can be used to give a security proof [MTSB13]. However this security
proof does not take into account the decoding failure probability. This is not not necessarily a
problem in a setting where the scheme is used to devise ephemeral keys [BGG+17, ABB+17].
However, in security models where an attacker is allowed to query the decryption oracle many
times, this can be a problem as observed by [GJS16] which showed how to attack the parameters
proposed in [MTSB13]. This attack really exploits the non negligible decoding failure probability
of the MDPC codes chosen in [MTSB13]. If this probability were as low as 2−λ where 2λ is the
complexity of the best attack that the scheme has to sustain, then this would not be a problem
and the security proof of [BGG+17] could be used to show the security of the scheme under this
stronger attacking model. This raises the issue whether or not the error probability of MDPC
codes can be made arbitrarily small.

We tackle this issue by giving several different answers to this issue. We study in depth
this question in the regime which is particularly interesting for these cryptographic applications,
namely when the weight of the parity-check equations is of order O (

√
n) where n is the length

of the MDPC code. We define in the whole article MDPC codes in this way

Definition 1 (MDPC code). Let α be a positive real number. An α MDPC code is a binary
linear code that admits a parity check matrix whose rows are all of weight ≤ α

√
n. When we do

not specify α, we implicitly assume that α = 1. In the case where this parity-check matrix have
rows of a same weight w and columns of a same weight v, we say that the parity-check matrix is
of type (v, w). By some abuse of terminology, we will also call the corresponding code a code of
type (v, w).

We will decode these codes with a simple bit-flipping decoding algorithm. One round of
decoding is just majority-logic decoding based on a sparse parity-check matrix of the code.

2



When we perform just one round of bit-flipping we call this decoder a majority-logic decoder.
Recall that a majority logic decoder based on a certain parity-check matrix computes for all
bits the number ui of parity-checks that involve the bit i that are are unsatisfied. Let ni be the
number of parity-checks involving bit i. If for a bit i we have ui > ni/2 (i.e if a strict majority of
such parity-checks is violated) the bit gets flipped. We will assume here that the computation of
the vi’s so that flipping one bit does not affect the other vj ’s. In other words the decoder works
as follows when we perform t iterations Usually, majority-logic decoding is performed by taking

Algorithm 1 Bit-flipping decoder

for all i ∈ {1, . . . , n} do
ni ← # {j ∈ {1, . . . , r} : hji = 1}

for a = 1 to t do
for all i ∈ {1, . . . , n} do

ui ← # {j ∈ {1, . . . , r} : hji = 1,
∑
` hj`y` = 1 (mod 2)}

for all i ∈ {1, . . . , n} do
if ui > ni/2 then

yi ← 1− yi

for each bit i a subset of the parity-checks that involve it that do not intersect each other in other
positions and perform majority-voting based on this subset. The analysis of the majority-logic
decoder is based on this assumption. We proceed differently here by taking into account all
parity-checks that involve a given bit. A crucial quantity will play an important role, namely

Definition 2 (maximum column intersection). Let H = (hij)1≤i≤r
1≤j≤n

be a binary matrix. The

intersection number of two different columns j and j′ of H is equal to the number of rows i
for which hij = hij′ = 1. The maximum column intersection of H is equal to the maximum
intersection number of two different columns of H.

The point is that it is readily verified (see Subsection 2.1) that

Proposition 1. Consider a code with a parity check matrix for which every column has weight at
least v and whose maximum column intersection is s. Performing majority-logic decoding based
on this matrix (i.e. Algorithm 1 with t = 1) corrects all errors of weight ≤ b v2sc.

The point is that for MDPC codes the maximum column intersection is really small. We
namely prove that for a natural random MDPC code model, the maximum intersection number

of the parity-check matrix defining the MDPC code is typically of order Ω
(

logn
log logn

)
. Computing

the maximum intersection number can obviously be performed in polynomial time and this allows
us to give a randomized polynomial time algorithm for constructing MDPC codes of length n

and fixed rate R ∈ [0, 1) that correct any pattern of Ω
(√

n log logn
logn

)
errors with the majority-logic

decoder decoder.
For these codes we prove here that

i. A code that admits a parity-check matrix of type (v, w) and maximum column intersection
s corrects at least errors with the majority-logic decoder based on this parity-check matrix.

ii There is a randomized polynomial time algorithm for constructing MDPC codes of length

n and fixed rate R ∈ [0, 1) that correct any pattern of Ω
(√

n log logn
logn

)
errors with the

majority-logic decoder decoder.
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iii. Under a reasonable assumption on the first round of the bit-flipping decoder, the same
MDPC codes correct Ω (

√
n) errors with two iterations of a bit-flipping decoder with de-

coding failure probability of order e−Ω(n log logn
logn ).

iv. Under an additional assumption .

It should be noted that under an additional assumption on the subsequent iterations of the
bit-flipping decoder, it has been proved in [ABB+17] that MDPC codes correct Ω (

√
n) errors

by performing an unbounded number of bit-flipping iterations with probability of error e−Ω(n).
We also provide some concrete numbers to show that it is possible to construct MDPC codes
that avoid completely the [GJS16] attack and for which it is possible to provide a security proof
in strong security models with a significant key size overhead when compared to the parameters
proposed in [MTSB13] if we want to stay in the no-error scenario, with a reasonable overhead if
we make the assumption of the point [iii.] above, and very moderate overhead if we make the
assumptions of [iii.] and [iv.].
Notation. We denote by h(x) the entropy (in nats) of a Bernoulli random variable of parameter

x, that is h(x)
def
= −x lnx− (1− x) ln(1− x).

2 Majority-logic decoding and its performance for MDPC
codes

We start this section by proving Proposition 1, then show that for typical MDPC codes the
intersection number is small and that this allows to construct efficiently MDPC codes that

correct all patterns of O
(√

n log logn
logn

)
errors.

2.1 Proof of Proposition 1

Let us first recall this proposition.

Proposition 1. Consider a code with a parity check matrix for which every column has weight at
least v and whose maximum column intersection is s. Performing majority-logic decoding based
on this matrix (i.e. Algorithm 1 with t = 1) corrects all errors of weight ≤ b v2sc.

Proof. We denote by H = (hij)1≤i≤r
1≤j≤n

the parity-check matrix we use for performing majority-

logic decoding. For i in {1, . . . , r} denote by Ei the subset of positions ` which are in error and
in the support of the i-th parity check equation (i.e. hi` = 1). We number the parity-check
equations of the code from 1 to r. We consider now what happens to yj in the algorithm. There
are two cases to consider.
Case 1: yj is erroneous. We can upper-bound the number sj of satisfied parity-check equations
involving this bit by the number of parity-check equations involving this bit whose support
contains at least 2 errors. We consider now the graph Gj which is a bipartite graph associated
to j which is constructed as follows. Its set of vertices is the union of the set Aj of positions
different from j which are in error and the set Bj of parity-check equations that involve the
position j and whose support contains at least 2 errors. There is an edge between a position `
in Aj and parity-check equation i in Bj if and only if the parity-check equation involves `, that
is hi` = 1. Let ej be the number of edges of Gj and let nj = be the number of parity-check
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equations involving j. We observe now that

sj ≤ # {i : hij = 1, |Ei| ≥ 2} (1)

≤ ej

≤ s#Aj (2)

≤ s(t− 1)

≤ s
(
b v

2s
c − 1

)
< v/2.

(1) is just the first observation whereas (2) follows from the fact the degree in Gj of any vertex
is at most s by the assumption on the maximum intersection number of H. Since v/2 ≤ nj/2
it follows that the majority-logic decoder necessarily flips the bit and therefore corrects the
corresponding error.

Case 2: there is no error in position j. We can upper-bound the number uj of unsatisfied
positions in a similar way. This time we consider the graph G′j whose vertex set is the union
of A′j which is the set of positions which are in error and B′j the set of parity-check equations
involving j and whose support contains this time at least one error. We put an edge between
a position ` in A′j and parity-check equation i in B′j if and only if the parity-check equation
involves `. Let e′j be the number of edges of G′j . Similarly to what we did we observe now that

uj ≤ # {i : hij = 1, |Ei| ≥ 1}
≤ e′j

≤ s#Aj

≤ st

≤ s
(
b v

2s
c
)

(3)

≤ v/2

≤ nj/2.

In other words we will not flip this bit.

2.2 A random model for MDPC codes of type (v, w)

There are several ways to build random MDPC codes of type (v, w). The one which is used
in cryptography [BBC08, MTSB13, DGZ17, BGG+17, ABB+17, BBC+17] is to construct them
as quasi-cyclic codes. Our proof technique can also be applied to this case, but since there are
several different types of construction of this kind, so that we have to adapt our proof technique to
each of those, we will consider a more general model here. It is based on Gallager’s construction
of LDPC codes [Gal63]. We will construct an r × n random parity-check matrix of type (v, w)
by assuming that n is a multiple of w (n = n′w), r is a multiple of v (r = r′v) and that rw = nv
(this condition is necessary in order to obtain a matrix of type (v, w)). Let Pn,w be a matrix of
size n′ × n constructed as follows

Pn,w = In′ ⊗ 1w =



1w 0w . . . . . . 0w
0w 1w 0w · · · 0w
...

. . .
. . .

. . .
...

... . . .
. . .

. . . 0w
0w . . . . . . 0w 1w

 .
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where In′ denotes the identity matrix of size n′, 1w a row vector of length w whose entries are
all equal to 1, that is 1w = (1 . . . 1)︸ ︷︷ ︸

w times

, 0w a row vector of length w whose entries are all equal to

0. We then choose v permutations of length n at random and they define a parity-check matrix
H(π1, . . . , πv) of size r × n of type (v, w) as

H(π1, . . . , πv) =


Pπ1
n,w

Pπ2
n,w

. . .
Pπv
n,w

 ,

where Pπi
n,w denotes the matrix Pn,w whose columns have been permuted with πi. We denote by

Dr,n,v,w the associated probability distribution of binary matrices of size r × n and type (v, w)
we obtain when the πi’s are chosen uniformly at random.

2.3 The maximum intersection number of matrices drawn according
to Dr,n,v,w

The maximum intersection number of matrices drawn according to Dr,n,v,w turns out to be

remarkably small when w and v are of order
√
n, it is namely typically of order O

(
logn

log logn

)
. To

prove this claim we first observe that

Lemma 1. Consider a matrix H drawn at random according to the distribution Dr,n,v,w. Take
two arbitrary columns j and j′ of H and let njj′ be the intersection number of j and j′. We have
for all t ∈ {0, . . . , v}

P(njj′ = t) =

(
v

t

)(
w − 1

n− 1

)t(
1− w − 1

n− 1

)v−t
.

Proof. Recall that H = (hij)1≤i≤r
1≤j≤n

is of the form

H(π1, . . . , πv) =


Pπ1
n,w

Pπ2
n,w

. . .
Pπv
n,w

 ,

for some permutations π1, π2, . . . , πv chosen uniformly at random in Sn. A row i of H is called
a coincidence if and only if hij = hij′ . There is obviously one coincidence at most in each of the
blocks Pπ`

n,w. We claim now that the probability of a coincidence in each of these blocks is w−1
n−1 .

To verify this consider the row i of block Pπ`
n,w which is such that hij = 1. The probability that

there is a coincidence for this block is the probability that hij′ = 1 which amounts to the fact
that π`(j

′) takes its values in a subset of w − 1 values among n− 1 possible values. All of these
n − 1 are equiprobable. This shows the claim. Since the coincidences that occur in the blocks
are all independent (since the πi’s are independent) we obtain the aforementioned formula.

We use this to prove the following result

Proposition 2. Let α and β be two constants such that 0 < α < β. Assume we draw a parity-
check matrix H at random according to the distribution Dr,n,v,w where we assume that both v
and w satisfy α

√
n ≤ v < w ≤ β

√
n. Then for any ε > 0 the the maximum intersection number

of H is smaller than (2 + ε) logn
log logn with probability 1− o(1) as n tends to infinity.
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Proof. Let is number the columns of H from 1 to n. For i and j in {1, . . . , n} two different
columns of H we denote by Ei,j,t the event that the intersection number of i and j is ≥ t. Let
Et be the probability that the maximum intersection number is larger than or equal to t. By
the union bound, and then Lemma 1 we obtain

P(Et) = P

 ⋃
1≤i<j≤n

Ei,j,t


≤

∑
1≤i<j≤n

P(Ei,j,t)

≤ n2
v∑
s=t

(
v

s

)(
w − 1

n− 1

)s(
1− w − 1

n− 1

)v−s

From this we deduce

P(Et) ≤ n2
v∑
s=t

vv

ss(v − s)v−s

(
w − 1

n− 1

)s(
1− w − 1

n− 1

)v−s
where we use the well known upper-bound

(
v
s

)
≤ evh(s/v) = vv

ss(v−s)v−s . This allows to write

P(Et) ≤ n2
v∑
s=t

vv

ss(v − s)v−s
(w
n

)s
(4)

≤ n2
v∑
s=t

vv−s

(v − s)v−s
(v · w
s · n

)s
≤ n2

v∑
s=t

(
1 +

s

v − s

)v−s (v · w
s · n

)s
≤ n2

v∑
s=t

(e · v · w
s · n

)s
≤ n2

v∑
s=t

(
eβ2

s

)s
Choose now t ≥ (2 + ε) lnn

ln lnn for some ε > 0. When n is large enough, we have that eβ2

t < 1. In
such a case we can write

P(Et) ≤ n2
v∑
s=t

(
eβ2

t

)s

≤
n2
(
eβ2

t

)t
1− eβ2

t

≤ n2

(
K

t

)t
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for some constant K > 0. This implies that

P(Et) ≤ n2e(2+ε) lnn
ln lnn ln(K ln lnn

γ lnn )

≤ eε lnn+
γ lnn ln(K ln lnn

γ )
ln lnn

= o(1)

as n tends to infinity.

This together with Proposition 1 implies directly the following corollary

Corollary 1. There exists a randomized algorithm working in expected polynomial time out-
putting for any designed rate R ∈ (0, 1) an MDPC code of rate ≥ R of an arbitrarily large length
n and parity-check equations of weight Θ(

√
n) that corrects all patterns of errors of size less than

γ
√
n ln lnn
lnn for n large enough, where γ > 0 is some absolute constant.

Proof. The randomized algorithm is very simple. We choose n to be a square n = w2 for some

integer w and let v
def
= b(1−R)wc and r

def
= nv

w . Then we draw a parity-check matrix H at
random according to the distribution Dr,n,v,w. The corresponding code has clearly rate ≥ R.
We compute the maximum column intersection of H. This can be done in time O

(
wn2

)
. If

this column intersection is greater than (2 + ε) lnn
ln lnn we output the corresponding MDPC code,

if not we draw at random H again until finding a suitable matrix H. By Proposition 1 we

know that such a code can correct all patterns of at most
⌊
α
√
n ln lnn

(4+ε) lnn

)
c errors. This implies the

corollary.

3 Analysis of two iterations of bit-flipping

We derived in the previous section a condition ensuring that one round of bit-flipping corrects
all the errors. We will now estimate the probability that performing one round of bit-flipping
corrects enough errors so that another round of bit-flipping will correct all remaining errors.
To analyze the first round of decoding we will model the bit-flipping algorithm by a binomial
distribution. More precisely, consider an MDPC code of type (v, w) and length n. The noise
model is the following: an error of weight t was chosen uniformly at random and added to the
codeword of the MDPC code. For i ∈ {1, . . . , n − t}, let E0

i be the Bernouilli random variable
which is equal to 1 iff the i-th position that was not in error initially is in error after the first
round of iterative decoding. We also denote by U0

i the counter uj associated to the i-th position
which was not in error. U0

i is the sum
∑v
j=1 V

0
ij of v Bernouilli random variables V 0

ij associated

to the v parity-check equations involving this bit. A Bernoulli-random variable V 0
ij is equal to 1 if

and only the corresponding parity-check is equal to 1. Note that by definition of the bit-flipping
decoder

E0
i = 1{U0

i >v/2}

Similarly, for i ∈ {1, . . . , t} we denote by E1
i the Bernoulli random variable that is equal to 1 iff

the i-th bit that was in error initially stays in error after the first round of Algorithm 1. We also
define the U1

i ’s and the V 1
ij ’s similarly. In this case

E1
i = 1{U0

i ≤v/2}.

Let us bring in for b ∈ {0, 1}:
pb

def
= P(V bij = 1). (5)
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It is clear that these probabilities do not depend on i and j and that this definition is consistent.
It is (essentially) proved in [ABB+17] that

Lemma 2. Assume that w = O (
√
n) and t = O (

√
n). Then

pb =
1

2
− (−1)bε

(
1

2
+O

(
1√
n

))
, (6)

where ε
def
= e−

2wt
n .

We will recall a proof of this statement in the appendix. We will now make the following
assumption that simplifies the analysis

Assumption 1. When we use Algorithm 1 on an MDPC code of type (v, w), we assume that

• for all i ∈ {1, . . . , n − t} the counters U0
i of Algorithm 1 are distributed like sums of v

independent Bernoulli random variables of parameter q0 at the first iteration and the E0
i ’s

are independent;

• for all i ∈ {1, . . . , t} the counters U1
i of Algorithm 1 are distributed like sums of v inde-

pendent Bernoulli random variables of parameter q1 at the first iteration and the E1
i ’s are

independent.

To analyze the behavior of Algorithm 1 we will use the following lemma which is just a slight
generalization of Lemma 6 in [ABB+17]

Lemma 3. Under Assumption 1 used for an MDPC code of type (v, w) and when the error is
chosen uniformly at random among the errors of weight t, we have for all (b, i) ∈ {0}×{1, . . . , n−
t} ∪ {1} × {1, . . . , t},

P(Ebi = 1) = O

(
(1− ε2)v/2√

vε

)
,

where ε
def
= e−

2wt
n .

Because this quantity does not depend on i we will therefore denote

qb
def
= P(Ebi = 1).

For the ease of reading the proof of this lemma is also recalled in the appendix. We let

S0
def
= E0

1 + · · ·+ E0
n−t

S1
def
= E1

1 + · · ·+ E1
t

S0 is the number of errors that were introduced after one round of iterative decoding coming from
flipping the n − t bits that were initially correct. Similarly S1 is the number of errors that are
left after one round of iterative decoding coming from not flipping the t bits that were initially

incorrect. Let S
def
= S0 + S1, which represents the total number of errors that are left after the

first round of iterative decoding. We quantify the probability that this quantity does not decay
enough by the following Theorem which holds under Assumption 1.

Theorem 1. Provided that Assumption 1 holds, we have for an MDPC code of type (v, w) where
v = Θ(

√
n) and w = Θ(

√
n):

P(S ≥ t′) ≤ 1√
t′
e
t′v
4 ln(1−ε2)+ t′

8 ln(n)+O(t′ ln(t′/t)).
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From this theorem we deduce that

Corollary 2. Provided that Assumption 1 holds, we can construct in expected polynomial time
arbitrarily for any designed rate R ∈ (0, 1) an MDPC code of rate ≥ R of an arbitrarily large
length n and parity-check equations of weight Θ(

√
n) large MDPC codes where the probability

of error Pe after two iterations of bit-flipping is upper-bounded by e−Ω(n ln lnn
lnn ) when there are

t = Θ(
√
n) errors.

Proof. We use the construction given in the proof of Corollary 1 to construct an MDPC code

of type (v, w) of length n = w2 and with v
def
= b(1−R)wc that allows to correct all patterns of

errors of size less than γ
√
n ln lnn
lnn for n large enough, where γ > 0 is some absolute constant with

just one round of the bit-flipping decoder of Algorithm 1. Then we use Theorem 1 to show that

with probability upper-bounded by e−Ω(n ln lnn
lnn ) there remains at most γ

√
n ln lnn
lnn errors after one

round of Algorithm 1. This proves the corollary.

In [ABB+17] there is an additional assumption which is made which is that the probability
of error is dominated by the probability that the first round of decoding is not able to decrease
the number by some mutiplicative factor α. With the notation of thi section, this assumption
can be described as follows.

Assumption 2. There exists some constant α > 0 such that the probability of error Perr for an
unbounded number of iterations of Algorithm 1 is upper-bounded by P(S ≥ αt) where S is the
number of errors that are left after the first round of Algorithm 1 and t is the initial number of
errors.

With this additional assumption (Assumption 1 is actually also made) it is proven in [ABB+17]
that the probability of errors decays exponentially when t = Θ(

√
n). This is actually obtained

by a slightly less general version of Theorem 1 (see [ABB+17, Theorem 1]).

4 Choosing the length in order to have a negligible prob-
ability of error

A Proof of Lemma 3

Let us first recall this lemma.

Lemma 3. Under Assumption 1 used for an MDPC code of type (v, w) and when the error is
chosen uniformly at random among the errors of weight t, we have for all (b, i) ∈ {0}×{1, . . . , n−
t} ∪ {1} × {1, . . . , t},

P(Ebi = 1) = O

(
(1− ε2)v/2√

vε

)
,

where ε
def
= e−

2wt
n .

To prove this lemma we will use

10



B The Kullback-Leibler divergence

The proofs of the results proved in the appendix use the Kullback-Leibler divergence (see see for
instance [CT91]) and some of its properties what we now recall.

Definition 3. Kullback-Leibler divergence
Consider two discrete probability distributions p and q defined over a same discrete space X .
The Kullback-Leibler divergence between p and q is defined by

D(p||q) =
∑
x∈X

p(x) ln
p(x)

q(x)
.

We overload this notation by defining for two Bernoulli distributions B(p) and B(q) of respective
parameters p and q

D(p||q) def
= D(B(p)||B(q)) = p ln

(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
.

We use the convention (based on continuity arguments) that 0 ln 0
p = 0 and p ln p

0 =∞.

We will need the following approximations/results of the Kullback-Leibler divergence

Lemma 4. For any δ ∈ (−1/2, 1/2) we have

D

(
1

2

∣∣∣∣∣∣∣∣12 + δ

)
= −1

2
ln(1− 4δ2). (7)

For constant α ∈ (0, 1) and δ going to 0 by staying positive, we have

D(α||δ) = −h(α)− α ln δ +O(δ). (8)

For 0 < y < x and x going to 0 we have

D(x||y) = x ln
x

y
+ x− y +O

(
x2
)
. (9)

Proof. Let us first prove (7).

D

(
1

2

∣∣∣∣∣∣∣∣12 + δ

)
=

1

2
ln

1/2

1/2 + δ
+

1

2
ln

1/2

1/2− δ

P = −1

2
ln(1 + 2δ)− 1

2
ln(1− 2δ)

= −1

2
ln(1− 4δ2).

To prove (8) we observe that

D(α||δ) = α ln
(α
δ

)
+ (1− α) ln

(
1− α
1− δ

)
= −h(α)− α ln δ − (1− α) ln(1− δ)
= −h(α)− α ln δ +O(δ).

11



For the last estimate we proceed as follows

D(x||y) = x ln
x

y
+ (1− x) ln

1− x
1− y

= x ln
x

y
− (1− x)

(
−x+ y +O

(
x2
))

= x ln
x

y
+ x− y +O

(
x2
)
.

The Kullback-Leibler appears in the computation of large deviation exponents. In our case,
we will use the following estimate which is well known and which can be found for instance in
[BGT11]

Lemma 5. Let p be a real number in (0, 1) and X1, . . . Xn be n independent Bernoulli random
variables of parameter p. Then, as n tends to infinity:

P(X1 + . . . Xn ≥ τn) =
(1− p)

√
τ

(τ − p)
√

2πn(1− τ)
e−nD(τ ||p)(1 + o(1)) for p < τ < 1, (10)

P(X1 + . . . Xn ≤ τn) =
p
√

1− τ
(p− τ)

√
2πnτ

e−nD(τ ||p)(1 + o(1)) for 0 < τ < p. (11)

C Proof of Lemma 2

Recall first this lemma.

Lemma 2. Assume that w = O (
√
n) and t = O (

√
n). Then

pb =
1

2
− (−1)bε

(
1

2
+O

(
1√
n

))
, (6)

where ε
def
= e−

2wt
n .

Before giving the proof of this lemma, observe P(V bij = 1) can be viewed as the probability
that the j-th parity check equation involving a bit i gives an incorrect information about bit i.
This is obtained through the following lemma.

Lemma 6. Consider a word h ∈ Fn2 of weight w and an error e ∈ Fn2 of weight t chosen
uniformly at random. Assume that both w and t are of order

√
n: w = O (

√
n) and t = O (

√
n).

We have

Pe(〈h, e〉 = 1) =
1

2
− 1

2
e−

2wt
n

(
1 +O

(
1√
n

))
.

Remark 1. Note that this probability is in this case of the same order as the probability taken over
errors e whose coordinates are drawn independently from a Bernoulli distribution of parameter
t/n. In such a case, from the piling-up lemma [Mat93] we have

Pe(〈h, e〉 = 1) =
1−

(
1− 2t

n

)w
2

=
1

2
− 1

2
ew ln(1−2t/n)

=
1

2
− 1

2
e−

2wt
n

(
1 +O

(
1√
n

))
.

12



The proof of this lemma will be done in the following subsection. Lemma 2 is a corollary of
this lemma since we have

pb = P(〈h, e〉 = 1|e1 = b). (12)

C.1 Proof of Lemma 6

The proof involves properties of the Krawtchouk polynomials. We recall that the (binary)
Krawtchouk polynomial of degree i and order n (which is an integer), Pni (X) is defined for
i ∈ {0, · · · , n} by:

Pni (X)
def
=

(−1)i

2i

i∑
j=0

(−1)j
(
X

j

)(
n−X
i− j

)
where

(
X

j

)
def
=

1

j!
X(X − 1) · · · (X − j + 1). (13)

Notice that it follows on the spot from the definition of a Krawtchouk polynomial that

Pnk (0) =
(−1)k

(
n
k

)
2k

. (14)

Let us define the bias δ by

δ
def
= 1− 2Pe(〈h, e〉 = 1).

In other words Pe(〈h, e〉 = 1) = 1
2 (1− δ). These Krawtchouk polynomials are readily related to

δ. We first observe that

Pe(〈h, e〉 = 1) =

∑w
j=1
j odd

(
t
j

)(
n−t
w−j

)
(
n
w

) .

Moreover by observing that
∑w
j=0

(
t
j

)(
n−t
w−j

)
=
(
n
w

)
we can recast the following evaluation of a

Krawtchouk polynomial as

(−2)w(
n
w

) Pnw(t) =

∑w
j=0(−1)j

(
t
j

)(
n−t
w−j

)(
n
w

)
=

∑w
j=0
j even

(
t
j

)(
n−t
w−j

)
−
∑w

j=1
j odd

(
t
j

)(
n−t
w−j

)
(
n
w

)
=

(
n
w

)
− 2

∑w
j=1
j odd

(
t
j

)(
n−t
w−j

)
(
n
w

)
= 1− 2Pe(〈h, e〉 = 1)

= δ. (15)

To simplify notation we will drop the superscript n in the Krawtchouk polynomial notation. It
will be chosen as the length of the MDPC code when will use it in our case. An important lemma
that we will need is the following one.

Lemma 7. For all x in {1, . . . , t}, we have

Pw(x)

Pw(x− 1)
=

(
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)
.

13



Proof. This follows essentially from arguments taken in the proof of [MS86][Lemma 36, §7, Ch.
17]. The result we use appears however more explicitly in [KL95][Sec. IV] where it is proved that

if x is in an interval of the form
[
0, (1− α)

(
n/2−

√
w(n− w)

)]
for some constant α ∈ [0, 1)

independent of x, n and w, then

Pw(x+ 1)

Pw(x)
=

(
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)
.

For our choice of t this condition is met for x and the lemma follows immediately.

We are ready now to prove Lemma 6.

Proof of Lemma 6. We start the proof by using (15) which says that

δ =
(−2)w(

n
w

) Pnw(t).

We then observe that

(−2)w(
n
w

) Pnw(t) =
(−2)w(

n
w

) Pnw(t)

Pnw(t− 1)

Pnw(t− 1)

Pnw(t− 2)
. . .

Pnw(1)

Pnw(0)
Pnw(0)

=
(−2)w(

n
w

) ((
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)

)t
Pnw(0) (by Lemma 7)

=

(
1 +O

(
1

n

))t(
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)

)t
(by (14))

= e
t ln

(
1−2ω+

√
(1−2ω)2−4ω(1−ω)
2(1−ω)

)(
1 +O

(
t

n

))
where ω

def
=

w

n

= e
t ln

(
1−2ω+1−4ω+O(ω2)

2(1−ω)

)(
1 +O

(
t

n

))

= e
t ln

(
1−3ω+O(ω2)

1−ω

)(
1 +O

(
t

n

))
= e

−2tω+O
(
tw2

n2

)(
1 +O

(
t

n

))
= e−

2wt
n

(
1 +O

(
1√
n

))
,

where we used at the last equation that t = O (
√
n) and w = O (

√
n).

D Proof of Lemma 3

Let us first recall this lemma.

Lemma 3. Under Assumption 1 used for an MDPC code of type (v, w) and when the error is
chosen uniformly at random among the errors of weight t, we have for all (b, i) ∈ {0}×{1, . . . , n−
t} ∪ {1} × {1, . . . , t},

P(Ebi = 1) = O

(
(1− ε2)v/2√

vε

)
,

14



where ε
def
= e−

2wt
n .

Proof. For (b, i) ∈ {0}×{1, . . . , n− t}∪{1}×{1, . . . , t}, let Xi be independent Bernoulli random
variables of parameter pb. From Assumption 1 we have

P(E0
i = 1) = q0 = P(

v∑
i=1

X0
i > v/2)

P(E1
i = 1) = q1 = P(

v∑
i=1

X1
i ≤ v/2).

By using Lemma 5 we obtain for q0

q0 ≤
(1− p0)

√
1
2

( 1
2 − p0)

√
2πv(1− 1

2 )
e−vD( 1

2 ||p0)

≤ (1− p0)
√

2√
πvε (1 +O (1/

√
n))

e−vD( 1
2 || 12− 1

2 ε(1+O(1/
√
n))) (16)

≤ (1− p0)
√

2√
πvε (1 +O (1/

√
n))

e
v

(
ln(1−ε2)+O

(
1√
n

))
2 (17)

≤ O

(
(1− ε2)v/2√

vε

)
(18)

Whereas for q1 we also obtain

q1 ≤
p1

√
1
2

(p1 − 1
2 )
√

2πv 1
2

e−vD( 1
2 ||p1) (19)

≤ O

(
(1− ε2)v/2√

vε

)
(20)

E Proof of Theorem 1

We are ready now to prove Theorem 1. We first recall it.

Theorem 1. Provided that Assumption 1 holds, we have for an MDPC code of type (v, w) where
v = Θ(

√
n) and w = Θ(

√
n):

P(S ≥ t′) ≤ 1√
t′
e
t′v
4 ln(1−ε2)+ t′

8 ln(n)+O(t′ ln(t′/t)).

Proof.

P(S ≥ t′) ≤ P(S0 ≥ t′/2 ∪ S1 ≥ t′/2)

≤ P(S0 ≥ t′/2) + P(S1 ≥ t′/2)

15



By Assumption 1, S0 is the sum of n−t Bernoulli variables of parameter q0. By applying Lemma
5 we obtain

P(S0 ≥ t′/2) ≤
(1− q0)

√
t′

2(n−t)

( t′

2(n−t) − q0)
√

2π(n− t)(1− t′

2(n−t) )
e
−(n−t)D

(
t′

2(n−t)

∣∣∣∣∣∣q0)

≤ O

(
1√
t′
e
−(n−t)D

(
t′

2(n−t)

∣∣∣∣∣∣q0)) (21)

We observe now that

D

(
t′

2(n− t)

∣∣∣∣∣∣∣∣q0

)
≥ D

(
t′

2(n− t)

∣∣∣∣∣∣∣∣O( (1− ε2)v/2√
vε

))
(22)

where we used the upper-bound on q0 coming from Lemma 3 and the fact that D(x||y) ≥ D(x||y′)
for 0 < y < y′ < x < 1. By using this and Lemma 4, we deduce

D

(
t′

2(n− t)

∣∣∣∣∣∣∣∣q0

)
≥ t′

2(n− t)
ln

(
t′

2(n− t)

)
− t′

2(n− t)
ln

(
O

(
(1− ε2)v/2

ε
√
v

))
+O

(
t′

2(n− t)

)
≥ t′

2(n− t)
ln

(
t′
√
v

n

)
− t′v

4(n− t)
ln
(
1− ε2

)
+O

(
t′

n

)
≥ t′

2(n− t)
ln

(
t
√
v

n

)
+

t′

2(n− t)
ln(t′/t)− t′v

4(n− t)
ln
(
1− ε2

)
+O

(
t′

n

)
≥ − t′

8(n− t)
lnn− t′v

4(n− t)
ln
(
1− ε2

)
+O

(
t′ ln(t′/t)

n

)
.

By plugging this expression in (21) we obtain

P(S0 ≥ t′/2) ≤ 1√
t′
e
t′v
4 ln(1−ε2)+ t′

8 ln(n)+O(t′ ln(t′/t))

On the other hand we have

P(S1 ≥ t′/2) ≤
(1− q1)

√
t′

2t

( t
′

2t − q1)
√

2πt(1− t′

2t )
e
−tD

(
t′
2t

∣∣∣∣∣∣q1)

≤ O

(
1√
t′
e
−tD

(
t′
2t

∣∣∣∣∣∣q1)) (23)

Similarly to what we did above, by using the upper-bound on q1 of Lemma 3 and D(x||y) ≥
D(x||y′) for 0 < y < y′ < x < 1, we deduce that

D

(
t′

2t

∣∣∣∣∣∣∣∣q1

)
≥ D

(
t′

2t

∣∣∣∣∣∣∣∣O( (1− ε2)v/2

ε
√
v

))
By using this together with Lemma 4 we obtain

D

(
t′

2t

∣∣∣∣∣∣∣∣q1

)
≥ −h(t′/2t)− t′

2t
ln

(
O

(
(1− ε2)v/2

ε
√
v

))
+O

(
(1− 4ε2)v/2

ε
√
v

)
≥ − t

′v

4
ln
(
1− ε2

)
+
t′

8t
lnn+O

(
t′

t
ln(t′/t)

)
.
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By using this lower-bound in (23), we deduce

P(S1 ≥ t′/2) ≤ 1√
t′
e
t′v
4 ln(1−ε2)+ t′

8 ln(n)+O(t′ ln(t′/t)).
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