9,010 research outputs found

    HodgeRank with Information Maximization for Crowdsourced Pairwise Ranking Aggregation

    Full text link
    Recently, crowdsourcing has emerged as an effective paradigm for human-powered large scale problem solving in various domains. However, task requester usually has a limited amount of budget, thus it is desirable to have a policy to wisely allocate the budget to achieve better quality. In this paper, we study the principle of information maximization for active sampling strategies in the framework of HodgeRank, an approach based on Hodge Decomposition of pairwise ranking data with multiple workers. The principle exhibits two scenarios of active sampling: Fisher information maximization that leads to unsupervised sampling based on a sequential maximization of graph algebraic connectivity without considering labels; and Bayesian information maximization that selects samples with the largest information gain from prior to posterior, which gives a supervised sampling involving the labels collected. Experiments show that the proposed methods boost the sampling efficiency as compared to traditional sampling schemes and are thus valuable to practical crowdsourcing experiments.Comment: Accepted by AAAI201

    Analysis of Crowdsourced Sampling Strategies for HodgeRank with Sparse Random Graphs

    Full text link
    Crowdsourcing platforms are now extensively used for conducting subjective pairwise comparison studies. In this setting, a pairwise comparison dataset is typically gathered via random sampling, either \emph{with} or \emph{without} replacement. In this paper, we use tools from random graph theory to analyze these two random sampling methods for the HodgeRank estimator. Using the Fiedler value of the graph as a measurement for estimator stability (informativeness), we provide a new estimate of the Fiedler value for these two random graph models. In the asymptotic limit as the number of vertices tends to infinity, we prove the validity of the estimate. Based on our findings, for a small number of items to be compared, we recommend a two-stage sampling strategy where a greedy sampling method is used initially and random sampling \emph{without} replacement is used in the second stage. When a large number of items is to be compared, we recommend random sampling with replacement as this is computationally inexpensive and trivially parallelizable. Experiments on synthetic and real-world datasets support our analysis

    An Active Learning Algorithm for Ranking from Pairwise Preferences with an Almost Optimal Query Complexity

    Full text link
    We study the problem of learning to rank from pairwise preferences, and solve a long-standing open problem that has led to development of many heuristics but no provable results for our particular problem. Given a set VV of nn elements, we wish to linearly order them given pairwise preference labels. A pairwise preference label is obtained as a response, typically from a human, to the question "which if preferred, u or v?fortwoelements for two elements u,v\in V.Weassumepossiblenon−transitivityparadoxeswhichmayarisenaturallyduetohumanmistakesorirrationality.Thegoalistolinearlyordertheelementsfromthemostpreferredtotheleastpreferred,whiledisagreeingwithasfewpairwisepreferencelabelsaspossible.Ourperformanceismeasuredbytwoparameters:Thelossandthequerycomplexity(numberofpairwisepreferencelabelsweobtain).Thisisatypicallearningproblem,withtheexceptionthatthespacefromwhichthepairwisepreferencesisdrawnisfinite,consistingof. We assume possible non-transitivity paradoxes which may arise naturally due to human mistakes or irrationality. The goal is to linearly order the elements from the most preferred to the least preferred, while disagreeing with as few pairwise preference labels as possible. Our performance is measured by two parameters: The loss and the query complexity (number of pairwise preference labels we obtain). This is a typical learning problem, with the exception that the space from which the pairwise preferences is drawn is finite, consisting of {n\choose 2}$ possibilities only. We present an active learning algorithm for this problem, with query bounds significantly beating general (non active) bounds for the same error guarantee, while almost achieving the information theoretical lower bound. Our main construct is a decomposition of the input s.t. (i) each block incurs high loss at optimum, and (ii) the optimal solution respecting the decomposition is not much worse than the true opt. The decomposition is done by adapting a recent result by Kenyon and Schudy for a related combinatorial optimization problem to the query efficient setting. We thus settle an open problem posed by learning-to-rank theoreticians and practitioners: What is a provably correct way to sample preference labels? To further show the power and practicality of our solution, we show how to use it in concert with an SVM relaxation.Comment: Fixed a tiny error in theorem 3.1 statemen
    • …
    corecore