4 research outputs found

    Doing it your way: How individual movement styles affect action prediction

    Get PDF
    Individuals show significant variations in performing a motor act. Previous studies in the action observation literature have largely ignored this ubiquitous, if often unwanted, characteristic of motor performance, assuming movement patterns to be highly similar across repetitions and individuals. In the present study, we examined the possibility that individual variations in motor style directly influence the ability to understand and predict others’ actions. To this end, we first recorded grasping movements performed with different intents and used a two-step cluster analysis to identify quantitatively ‘clusters’ of movements performed with similar movement styles (Experiment 1). Next, using videos of the same movements, we proceeded to examine the influence of these styles on the ability to judge intention from action observation (Experiments 2 and 3). We found that motor styles directly influenced observers’ ability to ‘read’ others’ intention, with some styles always being less ‘readable’ than others. These results provide experimental support for the significance of motor variability for action prediction, suggesting that the ability to predict what another person is likely to do next directly depends on her individual movement style

    A New, Fast and Accurate Algorithm for Hierarchical Clustering on Euclidean Distances

    No full text
    Abstract. A simple hierarchical clustering algorithm called CLUBS (for CLustering Using Binary Splitting) is proposed. CLUBS is faster and more accurate than existing algorithms, including k-means and its recently proposed refinements. The algorithm consists of a divisive phase and an agglomerative phase; during these two phases, the samples are repartitioned using a least quadratic distance criterion possessing unique analytical properties that we exploit to achieve a very fast computation. CLUBS derives good clusters without requiring input from users, and it is robust and impervious to noise, while providing better speed and accuracy than methods, such as BIRCH, that are endowed with the same critical properties.
    corecore