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Abstract

Individuals show significant variations in performing a motor act. Previous studies in the

action observation literature have largely ignored this ubiquitous, if often unwanted, charac-

teristic of motor performance, assuming movement patterns to be highly similar across rep-

etitions and individuals. In the present study, we examined the possibility that individual

variations in motor style directly influence the ability to understand and predict others’

actions. To this end, we first recorded grasping movements performed with different intents

and used a two-step cluster analysis to identify quantitatively ‘clusters’ of movements per-

formed with similar movement styles (Experiment 1). Next, using videos of the same move-

ments, we proceeded to examine the influence of these styles on the ability to judge

intention from action observation (Experiments 2 and 3). We found that motor styles directly

influenced observers’ ability to ‘read’ others’ intention, with some styles always being less

‘readable’ than others. These results provide experimental support for the significance of

motor variability for action prediction, suggesting that the ability to predict what another per-

son is likely to do next directly depends on her individual movement style.

Introduction

Understanding others’ intentions is a prerequisite for successful social interaction [1]. But how
do we understand the intentions of other people? Is it possible to understand the intentions of
others by simply observing their movements? Few studies have directly assessed the ability to
judge intention frommovement and results have beenmixed [2,3]. Some studies report observ-
ers to be able to discriminate intentions from the observation of early differences in movement
kinematics [4,5]. In keeping with this notion, for example, [4] showed that, by simply observing
grasping movements, observerswere able to judge whether the agent’s intent in grasping the
object was to cooperate with a partner or compete against an opponent. Other studies, how-
ever, did not confirm such advance information pickup from others’ grasping patterns. For
example, [6] found that observerswere not able to predict whether an object was going to be
brought to the mouth or placed on the table until they had seen at least part of the post-grasp
movement—a finding that was taken to suggest that they did not detect early kinematic differ-
ences to predict the outcome of observed actions.
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Central to being able to interpret these apparently contradictory results is the understanding
of the relationship between the specific features of observedmovements and the capacity to
discriminate intention. Prior studies have largely ignored variations in motor performance,
assuming movement features to be similar across trials and individuals. Repeatedly performing
a movement, however, does not result in the same motor output on every attempt. More
importantly, in performing the same task, outputs of the motor systemmay vary substantially
from one individual to another [7]. Individual variations in movement patterns have been doc-
umented in a wide variety of animals [8], as well in humans [9]. For example, individuals have
been shown to use their own unique set of motor synergies, which varies in both structure and
number, but is consistent across different motor tasks and over a period of weeks [10]. While
differences in anatomy may contribute to such variations, it is likely that motor exploration,
experience, and training also influence subject-specificmuscle strategies, leading to dissimilar
kinematic patters for achieving an equivalent goal.

One issue that research on action observation has not considered until now is whether dif-
ferences in movement style influence action understanding. Somemovement styles may facili-
tate understanding of others’ intention, whereas others may make it more difficult. If so, the
mixed results regarding intention-from-movement understandingmay reflect, at least in part,
differences in the individual style of the observedmovements.

To examine this possibility, in the present study, we first recorded grasping movements per-
formed with different intents and used a two-step cluster analysis to identify quantitatively
‘clusters’ of movements performedwith similar movement styles (Experiment 1). Next, using
videos of the same grasping movements, we probed observers’ ability to judge intention from
the observation of different movement clusters (Experiments 2 and 3). To briefly preempt our
results, we found that the capacity to discriminate intention was modulated by the individual
style of the observedmovement such that, across different tasks, some movement styles were
always less ‘readable’ than others were. These findings provide the first demonstration that
individuality—regarded as a fundamental neuromechanical principle of how the motor system
plans and learns movements—also influences action observation.

Experiment 1: Action Execution—Methods

Participants

Seventeen participants (9 females, mean age 28.17 years, range 21–39) were recruited for the
experiment. All participants were right handed, had normal or normal to corrected vision, and
no history of neurological disorders. The research study was approved by local ethical commit-
tee (Comitato Etico Regione Liguria) and was carried out in accordance with the principles of
the revisedHelsinki Declaration (World Medical Association General Assembly, 2008). All the
participants provided written informed consent.

Apparatus and Procedure

The participants were seated on a height-adjustable chair with the elbow and wrist resting on a
table (length = 110 cm; width = 100 cm). In order to guarantee a repeatable start position
across participants, they were asked to maintain the forearm pronated, the right arm oriented
in the parasagittal plane passing through the shoulder, and the right hand in a semi-pronated
position, with the tips of the thumb and index finger on a tape-marked point placed on the
working space. A glass bottle was positioned on the table at a distance of about 46 cm from par-
ticipants’ bodymidline. Depending on condition, participants were instructed to reach towards
and grasp the bottle with one of the following intentions:
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1. grasp-to-pour: grasp the bottle to pour some water into a small glass (diameter: 5 cm; height:
8.5 cm) positioned on the left side of the bottle (at a distance of 25 cm);

2. grasp-to-place: grasp the bottle and place it in a cardboard box (length: 17 cm; width: 17 cm;
height 12.5 cm) positioned on the left side of the bottle (at a distance of 25 cm);

3. grasp-to-drink: grasp the bottle to drink some water from it.

The immediate spatial demands and the accuracy requirements were kept constant for
each intention across trials. The experimenter visually monitored the performance for each
trial to ensure participants’ compliance to task requirements. Participants performed two ses-
sions of 30 trials each, in 3 separate blocks of 10 trials for a total of 2 blocks of 10 trials for
each of the three intentions. The blocks were pseudo-randomized to ensure that the last block
of the first session was different from the first block of the second session. The first session
was preceded by a practice session to familiarize participants with the task (12 practice trials;
4 trials for each intention).

Kinematics and Video Recording

A near-infrared camera motion capture system (frame rate, 100 Hz; Vicon System) equipped
with nine cameras was used to track the hand kinematics. Each participant was outfitted with
lightweight retro-reflective hemispheric markers (4 mm in diameter) placed on the radial
aspect of the wrist, the metacarpal joint and the tip of the index finger, the metacarpal joint of
the little finger, the trapezium bone of the thumb, and the tip of the thumb. Movements were
also filmed from a lateral viewpoint using a digital video camera (Sony Handy Cam 3-D, 25
frames/sec). The video camera was placed at about 120 cm from participant’s hand starting
position with the camera view angle directed perpendicularly to the agent’s midline. Video
camera position and arrangement were kept constant for the entire duration of the study in
order to ensure that only the hand and the bottle were in full view from the beginning up to
the end of the movement.

Kinematics Data Processing

After data collection, each trial was individually inspected for correct marker identification and
then run through a low-pass Butterworth filter with a 6 Hz cutoff. Kinematics variables of
interest were computed for the reach-to-grasp phase of the movement, defined as the phase
from reach onset (i.e. the first time at which the wrist velocity crossed a 20 mm/s threshold) to
grasp offset (i.e. the time at which the wrist velocity dropped below a 20 mm/s threshold).
Within this time window, a custom software (Matlab; MathWorks, Natick, MA) was used to
compute two sets of variables: Fglobal and Flocal variables. Fglobal variables were expressed with
respect to the global frame of reference, i.e., the frame of reference of the motion capture sys-
tem.Within this frame of reference, we computed the following variables:

• wrist velocity, defined as the module of the velocity of the wrist marker (mm/sec);

• wrist height, defined as the z-component of the wrist marker (mm);

• wrist horizontal trajectory, defined as the x-component of the wrist marker (mm);

• grip aperture, defined as the distance between the marker placed on thumb tip and the one
placed on the tip of the index finger (mm).

To provide a better characterization of the hand joint movements, the second set of vari-
ables was expressed with respect to a local frame of reference centered on the hand (i.e., Flocal;
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see [11] for a detailed description of the Flocal). Within Flocal, we computed the following
variables:

• x-, y-, and z-thumb, defined as the x-, y- and z-coordinates for the thumb with respect to
Flocal (mm);

• x-, y-, and z-index, defined as the x-, y- and z-coordinates for the index with respect to Flocal
(mm);

• x-, y-, and z-finger plane, defined as the x-, y- and z-components of the thumb-index plane,
i.e., the three-dimensional components of the vector that is orthogonal to the plane, provid-
ing information about the abduction/adductionmovement of the thumb and index finger
irrespective of the effects of wrist rotation and of finger flexion/extension;

• x-, y-, and z-dorsum plane, defined as the x-, y- and z-components of the radius-phalanx
plane, providing information about the abduction, adduction and rotation of the hand dor-
sum irrespective of the effects of wrist rotation.

All kinematics variables were expressed with respect to normalized (%) rather than absolute
(ms) movement durations. After normalizing the duration of each reaching-graspingmove-
ment, the data were resampled at intervals of 0.1 of the normalizedmovement time. This pro-
cedure was applied to allow comparison of hand postures across trials and participants.

Clustering parameters

To avoid incorporating the effect of intersession variability for clustering, we selected correct
trials i.e. trials with correct marker identification, only from the second experimental session
(grasp-to-pour = 147 trials, grasp-to-drink= 154 trials, grasp-to-place = 160 trials). The result-
ing kinematic parameters for these trials were normalized and submitted to ‘two step clustering
procedure’ as implemented in SPSS (version 22) [12] separately for each intention. The two
step clustering procedure is a time efficient, agglomerative hierarchical clustering approach
that performs clustering in two steps:

1. a pre-cluster step that clusters cases into many sub-clusters;

2. a cluster step that clusters the sub-clusters resulting from pre-cluster step into the desired
number of clusters.

The clustering in this procedure is based on the ‘BIRCH’ algorithm [13]. Briefly, the algo-
rithm creates a Cluster Feature Tree (CF) that, instead of storing the actual values, stores the
statistics: Number of points (N), Linear Sum (LS), and Square Sum (SS) for all clusters. These
features have enough information to calculate the intra-cluster distances. This algorithm has
also been shown to be relatively stable both to the input order as well as to selected parameters
[13–15]. That is, unlike k-means algorithm or CLARANS, results do not vary based on the
order of data points or some initial parameter setting thus, producing stable clusters.

Utilizing this clustering procedure, we first determined, separately for each intention, the
optimal number of clusters by calculating Bayesian information criterion (BIC) (BIC differ-
ence ratio between successive numbers of clusters less than criteria value of 0.04). This initial
estimate of the number of clusters was then refined by finding the largest relative increase in
inter-cluster distance between the two closest clusters in each hierarchical clustering stage.
Finally, we performed the clustering utilizing the optimal number of clusters obtained by the
previous procedure and obtained the cluster number for each trial. The relative importance of
each kinematic feature was also calculated. Predictor importance (PI) provides a measure of
how well a specific variable differentiates between clusters. The PI of each variable i was
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calculated as

PIi ¼
� log

10
ðsigiÞ

max
jϵO
ð� log

10
ðsigjÞÞ

where O denotes the set of predictor and evaluation fields, sigi is the significance or p-value
computed based on an F-test.

Results

As expected, several distinct movement profiles emerged for each intention from the cluster-
ing analysis. The two-step analysis yielded three optimal clusters for grasp-to-pourmove-
ments, three optimal clusters for grasp-to-drinkmovements, and two optimal clusters for
grasp-to-placemovements, suggesting a reduced level of variability when grasping aimed at
placing the bottle within the box. Cluster distribution profiles are provided for each intention
in Table 1.

The unequal distributions of movements indicates that, for a specific intention, some
motor styles are more represented than others. In other words, the natural statistic of
human movement makes some movement styles more probable than others. The relative
importance of kinematic features in determining the cluster distribution profile for each
intention is provided in S1 Fig. As illustrated in S1 Fig, the kinematic variable ‘z-dorsum
plane’ scored higher on the importance measure for both grasp-to-pour and grasp-to-drink
movements, whereas ‘grip aperture’ proved an important feature for grasp-to-place move-
ments. Overall, whereas hand joint movements (computed with reference to a local frame of
reference centered on the hand) were important in differentiating clusters for grasp-to-pour
and grasp-to-drinkmovements, grip aperture played a more important role for grasp-to-
place movements.

Crucially, although individual participant information was withheld from the modeling
process, in all but 4 out of 461 trials (1 trial for grasp-to-pour, 2 trials for grasp-to-drink, and
1 trial for grasp-to-place), trials from the same participant (for a specific intention) were
assigned to the same cluster. This indicates that variations in movement performance did not
emerge from online, trial-by-trial optimization, but reflected differences in individual move-
ment styles [7].

Experiment 2: Action Observation

The finding that individuals have their own motor program styles, i.e., they show significant
individual variations in outputs of the motor system, raises the question of whether individual-
ity of motor style influences the ability to discriminate intention. To address this possibility, in
Experiment 2 we used clustering information to establish correspondence between the style of
the observedmovement and the capacity to discriminate intention in a binary choice design.

Table 1. Cluster distribution profile for different intentions in Experiment 1.

Intention No. of clusters Cluster distribution (in % of trials)

Grasp-to-pour 3 43.53%, 31.97%, 24.48%

Grasp-to-drink 3 30.51%, 29.87%, 39.61%

Grasp-to-place 2 70%, 30%

Optimum number of clusters and corresponding percentage of trials are shown for each intention.

doi:10.1371/journal.pone.0165297.t001
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Methods

Participants

Eighteen participants (9 females, mean 24.78 years, range 20–32) were recruited for the experi-
ment. All participants were right handed, had normal or normal to corrected vision, and did
not have any neurological disorders. All the participants gave written informed consent to par-
ticipate in the experiment. None of them participated in Experiment 1.

Stimuli

Video clips of grasp-to-pour and grasp-to-drinkmovement recorded in Experiment 1 served as
stimuli for Experiment 2. After removing videos with technical problems (e.g., hand temporarily
out of sight due to trajectory height; water reflection and movement in the bottle; n = 51), we
equated the number of movements for each intention based on the intention with least number
of trials (grasp-to pour, n = 128). Then, we performed linear discriminant analysis (LDA) using
the kinematics variables as predictors and the intention as target and, based on LDA results, we
selected, for each intention, the 50 movements that minimized the distance from their own cen-
troid (i.e. the mean variate score for each intention). This procedure allowed us to identify, for
each intention, 50 representative movements. As shown in Table 2, cluster distribution profiles
(in % of trials) comprised an unequal distribution of movements per cluster similar to that
obtained in Experiment 1. This suggests that the selectedmovements reflected the natural prev-
alence of movement styles over the entire distribution of movements. The corresponding videos
were edited using Adobe Premiere Pro CS6 (.mp4 format, disabled audio, 25 frames/s, resolu-
tion 1280 × 800 pixel). To ensure that only advance sources of information were made available
to participants as to judge the agent’s intention, video clips were temporally occluded at the time
the fingers contacted the object. Each video clip started therefore with the actual reach onset
and ended at grasp offset, with the duration of the video varying according to the actual duration
of the movement (from 760 ms to 1640 ms). Neither the second part of the movement nor other
objects on the table were visible (see sample S1 Video). The actors in the videos were all Cauca-
sian and wore a black colored shirt. The percentage of movements performed by male and
female agents was also controlled to be similar across intentions.

Procedure

The experiment was carried out in a dimly lit room. Participants sat in front of a 17- inch com-
puter screen (1280 x 800 resolution, 75 Hz), at a viewing distance of 50 cm. Stimuli

Table 2. Cluster distribution profiles for representative movements in Experiment 2 and Experiment 3.

Intention Cluster Cluster distribution (% of trials) Number of actors Number of movements per actor

Grasp-to-pour 1 44% 8 6,5,3,6,9,5,8,2

2 33% 5 4,9,2,10,8

3 23% 5 5,1,4,7,6

Grasp-to-drink 1 30% 5 3,3,3,2,4

2 30% 5 1,7,3,3,1

3 40% 7 3,3,2,1,4,2,5

Grasp-to-place 1 78% 10 5,2,4,3,5,6,2,5,4,3

2 22% 5 1,3,4,1,2

Percentage of trials and number of actors for each cluster are shown for each intention.

doi:10.1371/journal.pone.0165297.t002
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presentation, timing, and randomization procedures were controlled using E-prime (version
2.0.10.242). Task structure conformed to a binary choice design (Fig 1a). Participants were
asked to watch videos of grasp-to-pour and grasp-to-drinkmovements and to decide if the
observedmovement was performedwith the intent to pour or drink. Each trial began with the
presentation of a white central fixation cross (1500 ms), followed by the viewing of a grasping
movement. Participant were instructed to respond as accurately and quickly as possible. They
could indicate a decision at any time after reach onset by pressing one of two active buttons on
a keyboard.When no response was given during the video, a red central fixation cross was dis-
played until response or 3000 ms had elapsed. After response, participants were also requested
to rate confidence of their decision on a 4-level scale by pressing a key (data not analyzed in the
current study). Each participant completed a total of 400 trials (200 trials for each intention),
with 4 repetitions of each movement. The videos were pseudo-randomizedover 4 blocks so
that each block included one repetition of each movement. The experimental session lasted
approximately 50 minutes.

To familiarize with the type of stimuli, before the beginning of the experiment, participants
were presented with the action execution set up and shown some videos displaying occluded
grasp-to-pour (n = 8) and grasp-to-drinkmovements (n = 8) followed by two unoccluded vid-
eos displaying the agent pouring the water into the glass and bringing the bottle to the mouth
to drink. No response was requested from participants during this practice.

Dependent measures and Statistical Data Analysis

We modeled the accuracies and reaction times of participants using a drift diffusionmodel
(DDM). Drift diffusionmodels have been used to model behavioral data from two-choice tasks
by modeling decisions based on the accumulation of evidence from the stimuli [16,17]. DDMs
specificallymodel different components of the cognitive decision process (rate of information
uptake, bias, etc.) and represent them as different parameters. Modeling of the cognitive deci-
sion process underlying the choices with DDMs is thus useful for dissociating task parameters
like task difficulty (indicated by drift rate) and effect of instructions (indicated by threshold)
[16,18]. The model accesses the performance of the participants in terms of measures like

Fig 1. a) Experimental design for Experiments 2 and 3. Participants were exposed to 4 blocks of 100 trials (50 trials for each intention). Each trial

started with the onset of two cues specifying the possible intentions. Then, a fixation cross appeared, followed by the video stimulus. Participants

were free to respond either during the video presentation or in the subsequent 3000 ms. b) Representation of a drift diffusion model. The model

defines parameters of rate of evidence accumulation, drift rate (‘v’), and separation between the decision boundaries, decision threshold (‘a’).

doi:10.1371/journal.pone.0165297.g001
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speed of reaching a decision boundary (drift rate, ‘v’) and distance between the two boundaries
(decision threshold, ‘a’) (Fig 1b).

In this way, theoretically distinct aspects of the cognitive decision process can be separated
statistically. DDMs have thus been proposed to provide a highly detailedmeasure of partici-
pants’ performance, deeper insights into the observedbehavior and consequently, drive theo-
retical advances [19,20]. Indeed, a major advantage of the DDMs is the high degree of
information utilization. In contrast to conventional forms of data analysis, the diffusionmodel
incorporates response times (RTs) for correct responses and errors, as well as the ratio of cor-
rect and erroneous responses. Additionally, DDMs provide precise, unambiguous quantifica-
tion of performance (compared to accuracy and reaction times) and are immune to speed-
accuracy tradeoffs [18].

We used a hierarchical Bayesian approach for the estimation of these DDM parameters (drift
rate ‘v’, threshold ‘a’, and non-decision time ‘t’) as implemented in the toolbox—Hierarchical
drift diffusionmodel (HDDM) [21]. HDDM allowed us to minimize potential confounds result-
ing from low stimulus probabilities in somemovement styles as it can recover reliable estimates
even from lesser number of trials per condition [21] To evaluate HDDMmodel performance,
we used the Deviance Information Criterion (DIC). DIC is a commonly used goodness-of-fit
measure for evaluating hierarchical models [22]. We compared DIC values (lower being better)
for a model allowing drift rates to vary across clusters (‘Cluster model’) with those of a ‘Null
model’ where drift rate was not allowed to change between clusters (for a similar approach see
[21]). Following the usual rule of thumb, a difference of more than 10 betweenmodel DIC
scores was interpreted as evidence in favor of the better (i.e., lower) scoringmodel [23]. Model
performance evaluation showed that DIC values for the ‘Cluster model’ (DIC = 21986.42) were
indeed lower than those for the ‘Null model’ (DIC = 22834.92) with a difference of 848.50. This
indicates that the ‘Cluster model’ provided better fit than the ‘Null model’.

We therefore tested the significance of the estimated parameters for the ‘Cluster model’.
Since HDDM toolbox utilizes a Bayesian framework, significance testing can be performed
directly on the posterior distribution and results can be interpreted in terms of probabilities.
Thus, we analyzed the posterior distributions for different clusters to evaluate differences
between them. To this end, we calculated the proportion of the posteriors in which the drift
rate for one cluster was higher that than the other. A difference of more than 5% in the poste-
rior distribution overlap (Pp|D) was considered significant (suggesting a higher probability of
difference between the conditions).We also evaluated whether cluster drift rates were signifi-
cantly different from a test value of 0 to ascertain likelihoodof drifting towards the correct
alternative choice. A drift rate close to 0 corresponds to a process which is equally likely to
move towards either of the choices, indicating a slow rate of evidence accumulation. On the
contrary, a higher positive drift rate indicates a faster evidence accumulation towards the cor-
rect alternative. Since the hierarchical estimation procedure utilized violates the independence
assumption, we did not analyze subject parameter estimates in a frequentistic test. Additional
confirmatory analyses were also performed on accuracy and RTs separately. Results are pro-
vided in S1 File.

Results

DDM results showed significant differences between clusters on drift rates for grasp-to-pour
movements. In particular, whereas similar drift rates were associated with cluster 2 and cluster
3 (posterior distribution overlap Pp|D [cluster 3< cluster 2] = 0.164), drift rates for clusters 2
and 3 were higher compared to those for cluster 1 (Pp|D [cluster 2< cluster 1] = 0.026; Pp|D
[cluster 3< cluster 1] = 0.002) (Fig 2). The difference between clusters was also significant for
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grasp-to-drinkmovements when comparing drift rates for cluster 3 to those for clusters 1 and
2 (Pp|D [cluster 3< cluster 1] = 0.037, Pp|D [cluster 3< cluster 2] = 0.007). No differences were
found between clusters 1 and 2 (Pp|D [cluster 2< cluster 1] = 0.73).

For grasp-to-pourmovements, drift rates were significantly higher than 0 for cluster 2 and 3
(Pp|D = .001), but not for cluster 1 (Pp|D = 0.32) (Fig 2). For grasp-to-drinkmovements, drift
rates were significantly higher than 0 for cluster 3 (Pp|D = 0.0003), but not for clusters
1 (Pp|D = 0.13) and 2 (Pp|D = 0.45).

Experiment 3: Action Observation

Results from Experiment 2 suggest that the capacity to judge intention frommotion is modu-
lated by the individual style of the observedmovements such that somemovement styles (e.g.
cluster 1 for grasp-to-pourmovements) are less ‘readable’ than others are. The validity of this
conclusion, however, may be limited to the comparison of pouring and drinkingmovements.
In other words, it is possible that the intention to drink is harder to discriminate in cluster 1
only when the choice is between graspingmovements aimed at pouring or drinking. To address
this possibility, in Experiment 3 we replaced grasp-to-drinkmovements with grasp-to-place
movements.

Methods

Participants

Eighteen participants (11 females, mean 26.17 years, range 22–34) were recruited for the exper-
iment. All participants were right handed, had normal or normal to corrected vision, and did
not have any neurological disorders.Written informed consent was obtained from the partici-
pants. None of them participated in Experiments 1 or 2.

Stimuli, Procedure and Analysis

Stimulus selection and experimental task procedures were similar as those utilized in Experi-
ment 2, except that grasp-to-placemovements (duration ranging from 720 ms to 1280 ms)
replaced grasp-to-drinkmovements (cluster distribution profiles are reported in Table 2). As

Fig 2. Rate of evidence accumulation (drift rate) posterior distribution densities for different clusters in Experiment 2. Clusters 1 and 2 in

grasp-to-pour movements have well separated densities compared to cluster 3. In addition, cluster 3 in grasp-to-drink has significantly different

distribution compared to clusters 1 and 2. Significant differences were determined when the overlap between distributions exceeded 5% (0.05).

doi:10.1371/journal.pone.0165297.g002
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in Experiment 2, we compared DIC values for a model allowing drift rates to vary across clus-
ters (‘Cluster model’) with those of a ‘Null model’, forcing drift rate to be equal across clusters.
With a DIC difference of 1137, the ‘Cluster model’ (DIC = 14651.28) was clearly better than
the ‘Null model’ (DIC = 15788.75).

Results

We repeated our DDMmeasurements on grasp-to-pourmovements and found increased drift
rates for clusters 3 and 2 compared to cluster 1 (posterior distribution overlap Pp|D [cluster
2< cluster 1]< 0.001; Pp|D [cluster 3< cluster 1]< 0.001), with no significant difference
between clusters 2 and 3 (Pp|D [cluster 3< cluster 2] = 0.409) (Fig 3). The pattern of results for
grasp-to-pourmovements was thus identical to that in Experiment 2. In addition, we also
found that for grasp-to-placemovements drift rates for cluster1 were lower than those for clus-
ter 2 (Pp|D [cluster 1< cluster 2] = 1.0).

As for Experiment 2, for grasp-to-pourmovements, drift rates were significantly higher
than 0 for clusters 2 and 3, but not for cluster 1 (Pp|D [cluster 1< 0] = 0.18, Pp|D (cluster 2< 0)
< 0.001, Pp|D [cluster 3< 0]< 0.001) (Fig 3). For grasp-to-placemovements, drift rates for
both clusters were significantly higher than 0 (Pp|D [cluster 1< 0]<0.001, Pp|D [cluster 2< 0]
< 0.001).

General Discussion

Human movements inherently incorporate variability. Previous studies in the action observa-
tion literature have largely ignored this ubiquitous, if often unwanted, characteristic of motor
performance, assuming movement patterns to be highly similar across repetitions and
individuals.

Here we explored whether variations in motor output influences the ability to predict oth-
ers’ actions. To this end, we first quantified variations in the performance of grasping move-
ments performedwith different intents and, using two-step cluster analysis, identified ‘clusters’
of movements performedwith similar styles (Experiment 1). Next, we investigated whether
observers could predict the outcome of these movements as a function of movement style

Fig 3. Rate of evidence accumulation (drift rate) posterior distribution densities for different clusters in Experiment 3. As in Experiment 2,

clusters 1 and 2 in grasp-to-pour movements show well separated densities compared to cluster 3. For grasp-to-place, the two clusters have

completely non-overlapping distributions. Significant differences were determined when the overlap between distributions exceeded 5% (0.05).

doi:10.1371/journal.pone.0165297.g003
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(Experiments 2 and 3). Our results demonstrate that individual variations in kinematic pat-
terning directly influence the capacity to ‘read’ others’ intentions though action observation.

Individual variations in output of the motor system have been observed in walking [24] pos-
tural control [9], as well as in grasping movements [25]. For example, different movement pat-
terns have been identified in skilledmusicians, reflecting their individual history of musical
training [25]. Our results add to this growing literature showing that daily graspingmovements
performed by untrained subjects also express variations in style. Remarkably, clustering
revealed that these variations were highly consistent within a given individual, as all trials from
a given subject, except four, were clustered in the same cluster. This indicates that a portion of
ever-present motor variability in motor execution reflected individual differences in movement
patterns, resulting in individual styles of grasping.

When we examined the implications of these findings for action observation,we found that
while some styles facilitated intention discrimination, others’ styles made it more difficult. For
movements in some of the clusters, discriminationwas indeed not significantly above the test
value of 0, suggesting an equal likelihooddrifting towards either alternative (see Fig 2).

Since stimulus probabilities has been shown to influence two-choice classification [26–28],
one could ask whether this pattern reflects the unequal distribution of movements per cluster.
If so, we would have expected clusters associated with lower discriminability to comprise a
lower number of movements. This is because low-probability stimuli are more difficult to clas-
sify than high-probability stimuli [27]. As shown in Table 2, however, this was not the case.
Thus, that intention discrimination is more difficult for some styles in comparison to others
does not appear to reflect stimulus probability.

This has implications for previous action observation studies in which stimuli were obtained
by filming the movements performed by only a fewmodels—sometimes a single model [29–
32]. Variability in motor solutions limits the inferences that may be drawn from these studies.
In case of negative findings, for example, it might be impossible to determine to what extent
failure depends on the specific style of the observedmovement rather than on a general inabil-
ity to pick up fine kinematic information. In this regard, it is perhaps not surprising that the
action observation literature does not reveal a consistent picture: our findings suggest that, in
addition to task effects, these differences and inconsistencies between studies could in part
result from style variations in the selectedmovement patterns.

It is notable that some styles appear inherently less readable than others. This follows from
the observation that grasp-to-pourmovements in cluster 1 were associated with lower drift
rates both when the choice was between grasp-to-pour and grasp-to-drinkmovements and
when it was between grasp-to-pour and grasp-to-placemovements. This finding adds to the
debate about whether intentions can be identified throughmovement observations [33]. It has
been proposed that participants required to detect intention from action observationmay sim-
ply compare movement profiles to detect differences in visual kinematics. On this account,
rather than identify the intention associated with a specific kinematic profile (e.g., ‘grasp-to-
pour’), they may thus simply detect kinematic differences between the two movements. How-
ever, if this were the case, we would expect intention discriminability patterns to change
depending on the specific intention comparison (grasp-to-pour vs. grasp-to-drink or grasp-to-
pour vs. grasp-to-place). This was not the case in our study. Our results rather support the pro-
posal that intentions can per se be identified through the observation of others’ movements.
Moreover, they demonstrate how this identifiability depends on the individual style of the
observedmovement.

Finally, these findings can also be considered from the perspective of theories postulating a
role of the motor system in action prediction and inference [11,34]. The key concept in all
these theories is that the same motor models employed during action execution also serve as
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the basis for action observation and prediction. In line with this, it has been shown that the
accuracy of action inferences is dependent on how closely the observedmovement resembles
the observer’s own movement [35]. This was demonstrated by testing a heterogeneous popu-
lation of individuals that included healthy subjects of different ages, as well as different move-
ment disorder patients. The finding of individual movement styles shaping everyday actions,
however, opens up the prospect for an even more fine-grainedmechanism of action-percep-
tion coupling. If sensitivity to observed actions is indeed dependent upon how observers
themselves execute the observed action, then commonality in motor program styles should
facilitate reciprocal intention understanding.We would thus expect that the more similar the
movement styles of two people are, the more effective their ability to predict each other’s
actions will be.

Conclusions

It has recently emerged as a general principle in neuromechanics that individual—and not
averaged–solutions solve neuromotor problems when performing a motor task [7]. Averaging
trials across subjects may thus obscure the underlying structure of motor outputs. Our quanti-
tatively behavioral experiment extend the significance of this principle to action observation
suggesting that individual movement styles directly influence the ability to understand and pre-
dict others’ actions.While certain styles facilitate action prediction, others make it more diffi-
cult. This has implication for social understanding, as it suggests that failures in social
interactions between individuals may in part result from difficulties in reading intentions from
certainmovement styles.
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