9 research outputs found

    Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group

    Get PDF
    We present a neuro-mathematical model for geometrical optical illusions (GOIs), a class of illusory phenomena that consists in a mismatch of geometrical properties of the visual stimulus and its associated percept. They take place in the visual areas V1/V2 whose functional architecture have been modeled in previous works by Citti and Sarti as a Lie group equipped with a sub-Riemannian (SR) metric. Here we extend their model proposing that the metric responsible for the cortical connectivity is modulated by the modeled neuro-physiological response of simple cells to the visual stimulus, hence providing a more biologically plausible model that takes into account a presence of visual stimulus. Illusory contours in our model are described as geodesics in the new metric. The model is confirmed by numerical simulations, where we compute the geodesics via SR-Fast Marching

    A sub-Riemannian model of the visual cortex with frequency and phase

    Get PDF
    In this paper we present a novel model of the primary visual cortex (V1) based on orientation, frequency and phase selective behavior of the V1 simple cells. We start from the first level mechanisms of visual perception: receptive profiles. The model interprets V1 as a fiber bundle over the 2-dimensional retinal plane by introducing orientation, frequency and phase as intrinsic variables. Each receptive profile on the fiber is mathematically interpreted as a rotated, frequency modulated and phase shifted Gabor function. We start from the Gabor function and show that it induces in a natural way the model geometry and the associated horizontal connectivity modeling the neural connectivity patterns in V1. We provide an image enhancement algorithm employing the model framework. The algorithm is capable of exploiting not only orientation but also frequency and phase information existing intrinsically in a 2-dimensional input image. We provide the experimental results corresponding to the enhancement algorithm

    A sub-Riemannian model of the visual cortex with frequency and phase

    Get PDF
    International audienceIn this paper we present a novel model of the primary visual cortex (V1) based on orientation, frequency and phase selective behavior of the V1 simple cells. We start from the first level mechanisms of visual perception: receptive profiles. The model interprets V1 as a fiber bundle over the 2-dimensional retinal plane by introducing orientation, frequency and phase as intrinsic variables. Each receptive profile on the fiber is mathematically interpreted as a rotated, frequency modulated and phase shifted Gabor function. We start from the Gabor function and show that it induces in a natural way the model geometry and the associated horizontal connectivity modeling the neural connectivity patterns in V1. We provide an image enhancement algorithm employing the model framework. The algorithm is capable of exploiting not only orientation but also frequency and phase information existing intrinsically in a 2-dimensional input image. We provide the experimental results corresponding to the enhancement algorithm

    Neurogeometry of stereo vision

    Get PDF
    This work aims to develop a neurogeometric model of stereo vision, based on cortical architectures involved in the problem of 3D perception and neural mechanisms generated by retinal disparities. First, we provide a sub-Riemannian geometry for stereo vision, inspired by the work on the stereo problem by Zucker (2006), and using sub-Riemannian tools introduced by Citti-Sarti (2006) for monocular vision. We present a mathematical interpretation of the neural mechanisms underlying the behavior of binocular cells, that integrate monocular inputs. The natural compatibility between stereo geometry and neurophysiological models shows that these binocular cells are sensitive to position and orientation. Therefore, we model their action in the space R3xS2 equipped with a sub-Riemannian metric. Integral curves of the sub-Riemannian structure model neural connectivity and can be related to the 3D analog of the psychophysical association fields for the 3D process of regular contour formation. Then, we identify 3D perceptual units in the visual scene: they emerge as a consequence of the random cortico-cortical connection of binocular cells. Considering an opportune stochastic version of the integral curves, we generate a family of kernels. These kernels represent the probability of interaction between binocular cells, and they are implemented as facilitation patterns to define the evolution in time of neural population activity at a point. This activity is usually modeled through a mean field equation: steady stable solutions lead to consider the associated eigenvalue problem. We show that three-dimensional perceptual units naturally arise from the discrete version of the eigenvalue problem associated to the integro-differential equation of the population activity

    Minimal Surfaces in Sub-Riemannian Structures and Functional Geometry of the Visual Cortex

    Get PDF
    We develop geometrical models of vision consistent with the characteristics of the visual cortex and study geometric flows in the relevant model geometries. We provide a novel sub-Riemannian model of the primary visual cortex, which models orientation-frequency selective phase shifted cortex cell behavior and the associated horizontal connectivity. We develop an image enhancement algorithm using sub-Riemannian diffusion and Laplace-Beltrami flow in the model framework. We provide two geometric models for multi-scale orientation map and orientation-frequency preference map construction which employ Bargmann transform in high dimensional cortical spaces. We prove the uniqueness of the solution to sub-Riemannian mean curvature flow equation in the Heisenberg group geometry. An iterative diffusion process followed by a maximum selection mechanism was proposed by Citti and Sarti in the sub-Riemannian setting of the roto-translation group. They conjectured that this two-fold procedure is equivalent to a mean curvature flow. However a complete proof was missing, even in the Euclidean setting. We prove in the Euclidean setting that this two fold procedure is equivalent to mean curvature flow

    A Neuromathematical Model for Geometrical Optical Illusions

    No full text
    Geometrical optical illusions have been object of many studies due to the possibility they offer to understand the behavior of low-level visual processing. They consist in situations in which the perceived geometrical properties of an object differ from those of the object in the visual stimulus. Starting from the geometrical model introduced by Citti and Sarti (J Math Imaging Vis 24(3):307\ue2\u80\u93326, 2006), we provide a mathematical model and a computational algorithm which allows to interpret these phenomena and to qualitatively reproduce the perceived misperception
    corecore