11,977 research outputs found

    Calibrating Function Point Backfiring Conversion Ratios Using Neuro-Fuzzy Technique

    Get PDF
    Software estimation is an important aspect in software development projects because poor estimations can lead to late delivery, cost overruns, and possibly project failure. Backfiring is a popular technique for sizing and predicting the volume of source code by converting the function point metric into source lines of code mathematically using conversion ratios. While this technique is popular and useful, there is a high margin of error in backfiring. This research introduces a new method to reduce that margin of error. Neural networks and fuzzy logic in software prediction models have been demonstrated in the past to have improved performance over traditional techniques. For this reason, a neuro-fuzzy approach is introduced to the backfiring technique to calibrate the conversion ratios. This paper presents the neuro-fuzzy calibration solution and compares the calibrated model against the default conversion ratios currently used by software practitioners

    Software development effort estimation modeling using a combination of fuzzy-neural network and differential evolution algorithm

    Get PDF
    Software cost estimation has always been a serious challenge lying ahead of software teams that should be seriously considered in the early stages of a project. Lack of sufficient information on final requirements, as well as the existence of inaccurate and vague requirements, are among the main reasons for unreliable estimations in this area. Though several effort estimation models have been proposed over the recent decade, an increase in their accuracy has always been a controversial issue, and researchers' efforts in this area are still ongoing. This study presents a new model based on a hybrid of adaptive network-based fuzzy inference system (ANFIS) and differential evolution (DE) algorithm. This model tries to obtain a more accurate estimation of software development effort that is capable of presenting a better estimate within a wide range of software projects compared to previous works. The proposed method outperformed other optimization algorithms adopted from the genetic algorithm, evolutionary algorithms, meta-heuristic algorithms, and neuro-fuzzy based optimization algorithms, and could improve the accuracy using MMRE and PRED (0.25) criteria up to 7%

    A New Calibration for Function Point Complexity Weights

    Get PDF
    Function Point (FP) is a useful software metric that was first proposed twenty-five years ago, since then, it has steadily evolved into a functional size metric consolidated in the well-accepted Standardized International Function Point Users Group (IFPUG) Counting Practices Manual - version 4.2. While software development industry has grown rapidly, the weight values assigned to count standard FP still remain same, which raise critical questions about the validity of the weight values. In this paper, we discuss the concepts of calibrating Function Point, whose aims are to estimate a more accurate software size that fits for specific software application, to reflect software industry trend, and to improve the cost estimation of software projects. A FP calibration model called Neuro-Fuzzy Function Point Calibration Model (NFFPCM) that integrates the learning ability from neural network and the ability to capture human knowledge from fuzzy logic is proposed. The empirical validation using International Software Benchmarking Standards Group (ISBSG) data repository release 8 shows a 22% accuracy improvement of mean MRE in software effort estimation after calibration

    Optimization of Software Project Risk Assessment Using Neuro-Fuzzy Techniques

    Get PDF
    Hazard evaluation assumes a pivotal part in the product venture administration. The discriminating examination of distinctive danger evaluation techniques help specialists and professionals to assess the effect of different venture related dangers. The existing Fuzzy Expert Cost Constructive Model(Fuzzy ExCOM) model is a combination of fuzzy technique and Expert COCOMO. It takes help of mastery and data from prior exercises conveyed for expense and exertion estimation. However, it has limitations that it can't make space for backing from other noteworthy rules related to risks. The proposed work examinations the effect of the ANN technique for software project risk assessment. It serves to create danger standards utilizing Artificial Neural Network techniques to enhance the exactness of danger evaluation process. The combination of various optimization algorithm like Genetic Algorithms and Particle Swarm Optimization are applied collaboratively with Neural network to get best initial starting solution for Neural Network. The results show that this strategy with accessible task information and Neuro-Fuzzy Risk assessment technique provides enhanced outputs than existing Fuzzy Ex-com technique

    Optimization of fuzzy analogy in software cost estimation using linguistic variables

    Get PDF
    One of the most important objectives of software engineering community has been the increase of useful models that beneficially explain the development of life cycle and precisely calculate the effort of software cost estimation. In analogy concept, there is deficiency in handling the datasets containing categorical variables though there are innumerable methods to estimate the cost. Due to the nature of software engineering domain, generally project attributes are often measured in terms of linguistic values such as very low, low, high and very high. The imprecise nature of such value represents the uncertainty and vagueness in their elucidation. However, there is no efficient method that can directly deal with the categorical variables and tolerate such imprecision and uncertainty without taking the classical intervals and numeric value approaches. In this paper, a new approach for optimization based on fuzzy logic, linguistic quantifiers and analogy based reasoning is proposed to improve the performance of the effort in software project when they are described in either numerical or categorical data. The performance of this proposed method exemplifies a pragmatic validation based on the historical NASA dataset. The results were analyzed using the prediction criterion and indicates that the proposed method can produce more explainable results than other machine learning methods.Comment: 14 pages, 8 figures; Journal of Systems and Software, 2011. arXiv admin note: text overlap with arXiv:1112.3877 by other author
    corecore