12,820 research outputs found

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    Positive and Negative Congruency Effects in Masked Priming: A Neuro-computational Model Based on Representation Strength and Attention

    Get PDF
    Positive priming effects have been found with a short time between the prime and the target, while negative priming effects (i.e., a congruent prime causes longer RTs) have been found with a long time between the prime and the target. In the current study, positive and negative priming effects were found using stimuli that have strong and weak representations, respectively, without changing the time between prime and target. A model was developed that fits our results. The model also fits a wide range of previous results in this area. In contrast to other approaches our model depends on attentional neuro-modulation not motor self-inhibition

    Neural coding strategies and mechanisms of competition

    Get PDF
    A long running debate has concerned the question of whether neural representations are encoded using a distributed or a local coding scheme. In both schemes individual neurons respond to certain specific patterns of pre-synaptic activity. Hence, rather than being dichotomous, both coding schemes are based on the same representational mechanism. We argue that a population of neurons needs to be capable of learning both local and distributed representations, as appropriate to the task, and should be capable of generating both local and distributed codes in response to different stimuli. Many neural network algorithms, which are often employed as models of cognitive processes, fail to meet all these requirements. In contrast, we present a neural network architecture which enables a single algorithm to efficiently learn, and respond using, both types of coding scheme

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    The contribution of fMRI in the study of visual categorization and expertise

    Get PDF
    No description supplie

    A Defence of Cartesian Materialism

    Get PDF
    One of the principal tasks Dennett sets himself in "Consciousness Explained" is to demolish the Cartesian theatre model of phenomenal consciousness, which in its contemporary garb takes the form of Cartesian materialism: the idea that conscious experience is a process of presentation realized in the physical materials of the brain. The now standard response to Dennett is that, in focusing on Cartesian materialism, he attacks an impossibly naive account of consciousness held by no one currently working in cognitive science or the philosophy of mind. Our response is quite different. We believe that, once properly formulated, Cartesian materialism is no straw man. Rather, it is an attractive hypothesis about the relationship between the computational architecture of the brain and phenomenal consciousness, and hence one that is worthy of further exploration. Consequently, our primary aim in this paper is to defend Cartesian materialism from Dennett's assault. We do this by showing that Dennett's argument against this position is founded on an implicit assumption (about the relationship between phenomenal experience and information coding in the brain), which while valid in the context of classical cognitive science, is not forced on connectionism

    The Knowledge Level in Cognitive Architectures: Current Limitations and Possible Developments

    Get PDF
    In this paper we identify and characterize an analysis of two problematic aspects affecting the representational level of cognitive architectures (CAs), namely: the limited size and the homogeneous typology of the encoded and processed knowledge. We argue that such aspects may constitute not only a technological problem that, in our opinion, should be addressed in order to build articial agents able to exhibit intelligent behaviours in general scenarios, but also an epistemological one, since they limit the plausibility of the comparison of the CAs' knowledge representation and processing mechanisms with those executed by humans in their everyday activities. In the final part of the paper further directions of research will be explored, trying to address current limitations and future challenges
    corecore