2,873 research outputs found

    Linking Visual Development and Learning to Information Processing: Preattentive and Attentive Brain Dynamics

    Full text link
    National Science Foundation (SBE-0354378); Office of Naval Research (N00014-95-1-0657

    Linking Visual Cortical Development to Visual Perception

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Linking the Laminar Circuits of Visual Cortex to Visual Perception

    Full text link
    A detailed neural model is being developed of how the laminar circuits of visual cortical areas V1 and V2 implement context-sensitive binding processes such as perceptual grouping and attention, and develop and learn in a stable way. The model clarifies how preattentive and attentive perceptual mechanisms are linked within these laminar circuits, notably how bottom-up, top-down, and horizontal cortical connections interact. Laminar circuits allow the responses of visual cortical neurons to be influenced, not only by the stimuli within their classical receptive fields, but also by stimuli in the extra-classical surround. Such context-sensitive visual processing can greatly enhance the analysis of visual scenes, especially those containing targets that are low contrast, partially occluded, or crowded by distractors. Attentional enhancement can selectively propagate along groupings of both real and illusory contours, thereby showing how attention can selectively enhance object representations. Model mechanisms clarify how intracortical and intercortical feedback help to stabilize cortical development and learning. Although feedback plays a key role, fast feedforward processing is possible in response to unambiguous information.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Towards a Theory of the Laminar Architecture of Cerebral Cortex: Computational Clues from the Visual System

    Full text link
    One of the most exciting and open research frontiers in neuroscience is that of seeking to understand the functional roles of the layers of cerebral cortex. New experimental techniques for probing the laminar circuitry of cortex have recently been developed, opening up novel opportunities for investigating ho1v its six-layered architecture contributes to perception and cognition. The task of trying to interpret this complex structure can be facilitated by theoretical analyses of the types of computations that cortex is carrying out, and of how these might be implemented in specific cortical circuits. We have recently developed a detailed neural model of how the parvocellular stream of the visual cortex utilizes its feedforward, feedback, and horizontal interactions for purposes of visual filtering, attention, and perceptual grouping. This model, called LAMINART, shows how these perceptual processes relate to the mechanisms which ensure stable development of cortical circuits in the infant, and to the continued stability of learning in the adult. The present article reviews this laminar theory of visual cortex, considers how it may be generalized towards a more comprehensive theory that encompasses other cortical areas and cognitive processes, and shows how its laminar framework generates a variety of testable predictions.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-0409); National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-92-1-1309, N00014-95-1-0657

    Linking Attention to Learning, Expectation, Competition, and Consciousness

    Full text link
    The concept of attention has been used in many senses, often without clarifying how or why attention works as it does. Attention, like consciousness, is often described in a disembodied way. The present article summarizes neural models and supportive data and how attention is linked to processes of learning, expectation, competition, and consciousness. A key them is that attention modulates cortical self-organization and stability. Perceptual and cognitive neocortex is organized into six main cell layers, with characteristic sub-lamina. Attention is part of unified design of bottom-up, horizontal, and top-down interactions among indentified cells in laminar cortical circuits. Neural models clarify how attention may be allocated during processes of visual perception, learning and search; auditory streaming and speech perception; movement target selection during sensory-motor control; mental imagery and fantasy; and hallucination during mental disorders, among other processes.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    The Laminar Organization of Visual Cortex: A Unified View of Development, Learning, and Grouping

    Full text link
    Why are all sensory and cognitive neocortex organized into layered circuits? How do these layers organize circuits that form functional columns in cortical maps? How do bottom-up, top-down, and horizontal interactions within the cortical layers generate adaptive behaviors. This chapter summarizes an evolving neural model which suggests how these interactions help the visual cortex to realize: (1) the binding process whereby cortex groups distributed data into coherent object representations; (2) the attentional process whereby cortex selectively processes important events; and (3) the developmental and learning processes whereby cortex shapes its circuits to match environmental constraints. It is suggested that the mechanisms which achieve property (3) imply properties of (I) and (2). New computational ideas about feedback systems suggest how neocortex develops and learns in a stable way, and why top-down attention requires converging bottom-up inputs to fully activate cortical cells, whereas perceptual groupings do not.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Coordinated optimization of visual cortical maps : 2. Numerical studies

    Get PDF
    In the juvenile brain, the synaptic architecture of the visual cortex remains in a state of flux for months after the natural onset of vision and the initial emergence of feature selectivity in visual cortical neurons. It is an attractive hypothesis that visual cortical architecture is shaped during this extended period of juvenile plasticity by the coordinated optimization of multiple visual cortical maps such as orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we introduced a class of analytically tractable coordinated optimization models and solved representative examples, in which a spatially complex organization of the OP map is induced by interactions between the maps. We found that these solutions near symmetry breaking threshold predict a highly ordered map layout. Here we examine the time course of the convergence towards attractor states and optima of these models. In particular, we determine the timescales on which map optimization takes place and how these timescales can be compared to those of visual cortical development and plasticity. We also assess whether our models exhibit biologically more realistic, spatially irregular solutions at a finite distance from threshold, when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. We show that, although maps typically undergo substantial rearrangement, no other solutions than pinwheel crystals and stripes dominate in the emerging layouts. Pinwheel crystallization takes place on a rather short timescale and can also occur for detuned wavelengths of different maps. Our numerical results thus support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the architecture of the visual cortex. We discuss several alternative scenarios that may improve the agreement between model solutions and biological observations

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    A Neural Model of How Horizontal and Interlaminar Connections of Visual Cortex Develop into Adult Circuits that Carry Out Perceptual Grouping and Learning

    Full text link
    A neural model suggests how horizontal and interlaminar connections in visual cortical areas Vl and V2 develop within a laminar cortical architecture and give rise to adult visual percepts. The model suggests how mechanisms that control cortical development in the infant lead to properties of adult cortical anatomy, neurophysiology, and visual perception. The model clarifies how excitatory and inhibitory connections can develop stably by maintaining a balance between excitation and inhibition. The growth of long-range excitatory horizontal connections between layer 2/3 pyramidal cells is balanced against that of short-range disynaptic interneuronal connections. The growth of excitatory on-center connections from layer 6-to-4 is balanced against that of inhibitory interneuronal off-surround connections. These balanced connections interact via intracortical and intercortical feedback to realize properties of perceptual grouping, attention, and perceptual learning in the adult, and help to explain the observed variability in the number and temporal distribution of spikes emitted by cortical neurons. The model replicates cortical point spread functions and psychophysical data on the strength of real and illusory contours. The on-center off-surround layer 6-to-4 circuit enables top-clown attentional signals from area V2 to modulate, or attentionally prime, layer 4 cells in area Vl without fully activating them. This modulatory circuit also enables adult perceptual learning within cortical area Vl and V2 to proceed in a stable way.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657
    • …
    corecore