5 research outputs found

    Electrocardiogram Recognization Based on Variational AutoEncoder

    Get PDF
    Subtle distortions on electrocardiogram (ECG) can help doctors to diagnose some serious larvaceous heart sickness on their patients. However, it is difficult to find them manually because of disturbing factors such as baseline wander and high-frequency noise. In this chapter, we propose a method based on variational autoencoder to distinguish these distortions automatically and efficiently. We test our method on three ECG datasets from Physionet by adding some tiny artificial distortions. Comparing with other approaches adopting autoencoders [e.g., contractive autoencoder, denoising autoencoder (DAE)], the results of our experiment show that our method improves the performance of publically available on ECG analysis on the distortions

    Detection of abnormalities in ECG using Deep Learning

    Get PDF
    A significant part of healthcare is focused on the information that the physiological signals offer about the health state of an individual. The Electrocardiogram (ECG) cyclic behaviour gives insight on a subject’s emotional, behavioral and cardiovascular state. These signals often present abnormal events that affects their analysis. Two examples are the noise, that occurs during the acquisition, and symptomatic patterns, that are produced by pathologies. This thesis proposes a Deep Neural Networks framework that learns the normal behaviour of an ECG while detecting abnormal events, tested in two different settings: detection of different types of noise, and; symptomatic events caused by different pathologies. Two algorithms were developed for noise detection, using an autoencoder and Convolutional Neural Networks (CNN), reaching accuracies of 98,18% for the binary class model and 70,74% for the multi-class model, which is able to discern between base wandering, muscle artifact and electrode motion noise. As for the arrhythmia detection algorithm was developed using an autoencoder and Recurrent Neural Networks with Gated Recurrent Units (GRU) architecture. With an accuracy of 56,85% and an average sensitivity of 61.13%, compared to an average sensitivity of 75.22% for a 12 class model developed by Hannun et al. The model detects 7 classes: normal sinus rhythm, paced rhythm, ventricular bigeminy, sinus bradycardia, atrial fibrillation, atrial flutter and pre-excitation. It was concluded that the process of learning the machine learned features of the normal ECG signal, currently sacrifices the accuracy for higher generalization. It performs better at discriminating the presence of abnormal events in ECG than classifying different types of events. In the future, these algorithms could represent a huge contribution in signal acquisition for wearables and the study of pathologies visible in not only in ECG, but also EMG and respiratory signals, especially applied to active learning

    Learning Biosignals with Deep Learning

    Get PDF
    The healthcare system, which is ubiquitously recognized as one of the most influential system in society, is facing new challenges since the start of the decade.The myriad of physiological data generated by individuals, namely in the healthcare system, is generating a burden on physicians, losing effectiveness on the collection of patient data. Information systems and, in particular, novel deep learning (DL) algorithms have been prompting a way to take this problem. This thesis has the aim to have an impact in biosignal research and industry by presenting DL solutions that could empower this field. For this purpose an extensive study of how to incorporate and implement Convolutional Neural Networks (CNN), Recursive Neural Networks (RNN) and Fully Connected Networks in biosignal studies is discussed. Different architecture configurations were explored for signal processing and decision making and were implemented in three different scenarios: (1) Biosignal learning and synthesis; (2) Electrocardiogram (ECG) biometric systems, and; (3) Electrocardiogram (ECG) anomaly detection systems. In (1) a RNN-based architecture was able to replicate autonomously three types of biosignals with a high degree of confidence. As for (2) three CNN-based architectures, and a RNN-based architecture (same used in (1)) were used for both biometric identification, reaching values above 90% for electrode-base datasets (Fantasia, ECG-ID and MIT-BIH) and 75% for off-person dataset (CYBHi), and biometric authentication, achieving Equal Error Rates (EER) of near 0% for Fantasia and MIT-BIH and bellow 4% for CYBHi. As for (3) the abstraction of healthy clean the ECG signal and detection of its deviation was made and tested in two different scenarios: presence of noise using autoencoder and fully-connected network (reaching 99% accuracy for binary classification and 71% for multi-class), and; arrhythmia events by including a RNN to the previous architecture (57% accuracy and 61% sensitivity). In sum, these systems are shown to be capable of producing novel results. The incorporation of several AI systems into one could provide to be the next generation of preventive medicine, as the machines have access to different physiological and anatomical states, it could produce more informed solutions for the issues that one may face in the future increasing the performance of autonomous preventing systems that could be used in every-day life in remote places where the access to medicine is limited. These systems will also help the study of the signal behaviour and how they are made in real life context as explainable AI could trigger this perception and link the inner states of a network with the biological traits.O sistema de saúde, que é ubiquamente reconhecido como um dos sistemas mais influentes da sociedade, enfrenta novos desafios desde o ínicio da década. A miríade de dados fisiológicos gerados por indíviduos, nomeadamente no sistema de saúde, está a gerar um fardo para os médicos, perdendo a eficiência no conjunto dos dados do paciente. Os sistemas de informação e, mais espcificamente, da inovação de algoritmos de aprendizagem profunda (DL) têm sido usados na procura de uma solução para este problema. Esta tese tem o objetivo de ter um impacto na pesquisa e na indústria de biosinais, apresentando soluções de DL que poderiam melhorar esta área de investigação. Para esse fim, é discutido um extenso estudo de como incorporar e implementar redes neurais convolucionais (CNN), redes neurais recursivas (RNN) e redes totalmente conectadas para o estudo de biosinais. Diferentes arquiteturas foram exploradas para processamento e tomada de decisão de sinais e foram implementadas em três cenários diferentes: (1) Aprendizagem e síntese de biosinais; (2) sistemas biométricos com o uso de eletrocardiograma (ECG), e; (3) Sistema de detecção de anomalias no ECG. Em (1) uma arquitetura baseada na RNN foi capaz de replicar autonomamente três tipos de sinais biológicos com um alto grau de confiança. Quanto a (2) três arquiteturas baseadas em CNN e uma arquitetura baseada em RNN (a mesma usada em (1)) foram usadas para ambas as identificações, atingindo valores acima de 90 % para conjuntos de dados à base de eletrodos (Fantasia, ECG-ID e MIT -BIH) e 75 % para o conjunto de dados fora da pessoa (CYBHi) e autenticação, atingindo taxas de erro iguais (EER) de quase 0 % para Fantasia e MIT-BIH e abaixo de 4 % para CYBHi. Quanto a (3) a abstração de sinais limpos e assimptomáticos de ECG e a detecção do seu desvio foram feitas e testadas em dois cenários diferentes: na presença de ruído usando um autocodificador e uma rede totalmente conectada (atingindo 99 % de precisão na classificação binária e 71 % na multi-classe), e; eventos de arritmia incluindo um RNN na arquitetura anterior (57 % de precisão e 61 % de sensibilidade). Em suma, esses sistemas são mais uma vez demonstrados como capazes de produzir resultados inovadores. A incorporação de vários sistemas de inteligência artificial em um unico sistema pederá desencadear a próxima geração de medicina preventiva. Os algoritmos ao terem acesso a diferentes estados fisiológicos e anatómicos, podem produzir soluções mais informadas para os problemas que se possam enfrentar no futuro, aumentando o desempenho de sistemas autónomos de prevenção que poderiam ser usados na vida quotidiana, nomeadamente em locais remotos onde o acesso à medicinas é limitado. Estes sistemas também ajudarão o estudo do comportamento do sinal e como eles são feitos no contexto da vida real, pois a IA explicável pode desencadear essa percepção e vincular os estados internos de uma rede às características biológicas
    corecore