20,068 research outputs found

    Wavelet design by means of multi-objective GAs for motor imagery EEG analysis

    Get PDF
    Wavelet-based analysis has been broadly used in the study of brain-computer interfaces (BCI), but in most cases these wavelet functions have not been designed taking into account the requirements of this field. In this study we propose a method to automatically generate wavelet-like functions by means of genetic algorithms. Results strongly indicate that it is possible to generate (evolve) wavelet functions that improve the classification accuracy compared to other well-known wavelets (e.g. Daubechies and Coiflets)

    Two Different Approaches of Feature Extraction for Classifying the EEG Signals

    Get PDF
    The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals

    Generation of Whole-Body Expressive Movement Based on Somatical Theories

    Get PDF
    An automatic choreography method to generate lifelike body movements is proposed. This method is based on somatics theories that are conventionally used to evaluate human’s psychological and developmental states by analyzing the body movement. The idea of this paper is to use the theories in the inverse way: to facilitate generation of artificial body movements that are plausible regarding evolutionary, developmental and emotional states of robots or other non-living movers. This paper reviews somatic theories and describes a strategy for implementations of automatic body movement generation. In addition, a psychological experiment is reported to verify expression ability on body movement rhythm. This method facilitates to choreographing body movement of humanoids, animal-shaped robots, and computer graphics characters in video games

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Darwin's Rainbow: Evolutionary radiation and the spectrum of consciousness

    Get PDF
    Evolution is littered with paraphyletic convergences: many roads lead to functional Romes. We propose here another example - an equivalence class structure factoring the broad realm of possible realizations of the Baars Global Workspace consciousness model. The construction suggests many different physiological systems can support rapidly shifting, sometimes highly tunable, temporary assemblages of interacting unconscious cognitive modules. The discovery implies various animal taxa exhibiting behaviors we broadly recognize as conscious are, in fact, simply expressing different forms of the same underlying phenomenon. Mathematically, we find much slower, and even multiple simultaneous, versions of the basic structure can operate over very long timescales, a kind of paraconsciousness often ascribed to group phenomena. The variety of possibilities, a veritable rainbow, suggests minds today may be only a small surviving fraction of ancient evolutionary radiations - bush phylogenies of consciousness and paraconsciousness. Under this scenario, the resulting diversity was subsequently pruned by selection and chance extinction. Though few traces of the radiation may be found in the direct fossil record, exaptations and vestiges are scattered across the living mind. Humans, for instance, display an uncommonly profound synergism between individual consciousness and their embedding cultural heritages, enabling efficient Lamarkian adaptation
    • 

    corecore