3,928 research outputs found

    Traffic Network Control from Temporal Logic Specifications

    Get PDF
    We propose a framework for generating a signal control policy for a traffic network of signalized intersections to accomplish control objectives expressible using linear temporal logic. By applying techniques from model checking and formal methods, we obtain a correct-by-construction controller that is guaranteed to satisfy complex specifications. To apply these tools, we identify and exploit structural properties particular to traffic networks that allow for efficient computation of a finite state abstraction. In particular, traffic networks exhibit a componentwise monotonicity property which allows reach set computations that scale linearly with the dimension of the continuous state space

    Towards Robust Deep Reinforcement Learning for Traffic Signal Control: Demand Surges, Incidents and Sensor Failures

    Full text link
    Reinforcement learning (RL) constitutes a promising solution for alleviating the problem of traffic congestion. In particular, deep RL algorithms have been shown to produce adaptive traffic signal controllers that outperform conventional systems. However, in order to be reliable in highly dynamic urban areas, such controllers need to be robust with the respect to a series of exogenous sources of uncertainty. In this paper, we develop an open-source callback-based framework for promoting the flexible evaluation of different deep RL configurations under a traffic simulation environment. With this framework, we investigate how deep RL-based adaptive traffic controllers perform under different scenarios, namely under demand surges caused by special events, capacity reductions from incidents and sensor failures. We extract several key insights for the development of robust deep RL algorithms for traffic control and propose concrete designs to mitigate the impact of the considered exogenous uncertainties.Comment: 8 page

    Resilience of Traffic Networks with Partially Controlled Routing

    Full text link
    This paper investigates the use of Infrastructure-To-Vehicle (I2V) communication to generate routing suggestions for drivers in transportation systems, with the goal of optimizing a measure of overall network congestion. We define link-wise levels of trust to tolerate the non-cooperative behavior of part of the driver population, and we propose a real-time optimization mechanism that adapts to the instantaneous network conditions and to sudden changes in the levels of trust. Our framework allows us to quantify the improvement in travel time in relation to the degree at which drivers follow the routing suggestions. We then study the resilience of the system, measured as the smallest change in routing choices that results in roads reaching their maximum capacity. Interestingly, our findings suggest that fluctuations in the extent to which drivers follow the provided routing suggestions can cause failures of certain links. These results imply that the benefits of using Infrastructure-To-Vehicle communication come at the cost of new fragilities, that should be appropriately addressed in order to guarantee the reliable operation of the infrastructure.Comment: Accepted for presentation at the IEEE 2019 American Control Conferenc
    • …
    corecore