2 research outputs found

    Faulty Behavior of Storage Elements and Its Effects on Sequential Circuits

    Get PDF
    It is often assumed that the faults in storage elements (SEs) can be modeled as output/input stuck-at faults of the element. They are implicitly considered equivalent to the stuck-at faults in the combinational logic surrounding the SE cells. Transistor-level faults in common SEs are examined here. A more accurate higher level fault model for elementary SEs that better represents the physical failures is presented. It is shown that a minimal (stuck-at) model may be adequate if only modest fault coverage is desired. The enhanced model includes some common fault behaviors of SEs that are not covered by the minimal fault model. These include data-feedthrough and clock-feedthrough behaviors, as well as problems with logic level retention. Fault models for complex SE cells can be obtained without a significant loss of information about the structure of the circuit. The detectability of feedthrough faults is considered

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design
    corecore