72 research outputs found

    Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing systems

    Get PDF
    Infrastructure resources in distributed cloud data centers (CDCs) are shared by heterogeneous applications in a high-performance and cost-effective way. Edge computing has emerged as a new paradigm to provide access to computing capacities in end devices. Yet it suffers from such problems as load imbalance, long scheduling time, and limited power of its edge nodes. Therefore, intelligent task scheduling in CDCs and edge nodes is critically important to construct energy-efficient cloud and edge computing systems. Current approaches cannot smartly minimize the total cost of CDCs, maximize their profit and improve quality of service (QoS) of tasks because of aperiodic arrival and heterogeneity of tasks. This dissertation proposes a class of energy and performance-optimized scheduling algorithms built on top of several intelligent optimization algorithms. This dissertation includes two parts, including background work, i.e., Chapters 3–6, and new contributions, i.e., Chapters 7–11. 1) Background work of this dissertation. Chapter 3 proposes a spatial task scheduling and resource optimization method to minimize the total cost of CDCs where bandwidth prices of Internet service providers, power grid prices, and renewable energy all vary with locations. Chapter 4 presents a geography-aware task scheduling approach by considering spatial variations in CDCs to maximize the profit of their providers by intelligently scheduling tasks. Chapter 5 presents a spatio-temporal task scheduling algorithm to minimize energy cost by scheduling heterogeneous tasks among CDCs while meeting their delay constraints. Chapter 6 gives a temporal scheduling algorithm considering temporal variations of revenue, electricity prices, green energy and prices of public clouds. 2) Contributions of this dissertation. Chapter 7 proposes a multi-objective optimization method for CDCs to maximize their profit, and minimize the average loss possibility of tasks by determining task allocation among Internet service providers, and task service rates of each CDC. A simulated annealing-based bi-objective differential evolution algorithm is proposed to obtain an approximate Pareto optimal set. A knee solution is selected to schedule tasks in a high-profit and high-quality-of-service way. Chapter 8 formulates a bi-objective constrained optimization problem, and designs a novel optimization method to cope with energy cost reduction and QoS improvement. It jointly minimizes both energy cost of CDCs, and average response time of all tasks by intelligently allocating tasks among CDCs and changing task service rate of each CDC. Chapter 9 formulates a constrained bi-objective optimization problem for joint optimization of revenue and energy cost of CDCs. It is solved with an improved multi-objective evolutionary algorithm based on decomposition. It determines a high-quality trade-off between revenue maximization and energy cost minimization by considering CDCs’ spatial differences in energy cost while meeting tasks’ delay constraints. Chapter 10 proposes a simulated annealing-based bees algorithm to find a close-to-optimal solution. Then, a fine-grained spatial task scheduling algorithm is designed to minimize energy cost of CDCs by allocating tasks among multiple green clouds, and specifies running speeds of their servers. Chapter 11 proposes a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are met in cloud-edge computing systems. A single-objective constrained optimization problem is solved by a proposed simulated annealing-based migrating birds optimization. This dissertation evaluates these algorithms, models and software with real-life data and proves that they improve scheduling precision and cost-effectiveness of distributed cloud and edge computing systems

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Build your own closed loop: Graph-based proof of concept in closed loop for autonomous networks

    Get PDF
    Next Generation Networks (NGNs) are expected to handle heterogeneous technologies, services, verticals and devices of increasing complexity. It is essential to fathom an innovative approach to automatically and efficiently manage NGNs to deliver an adequate end-to-end Quality of Experience (QoE) while reducing operational expenses. An Autonomous Network (AN) using a closed loop can self-monitor, self-evaluate and self-heal, making it a potential solution for managing the NGN dynamically. This study describes the major results of building a closed-loop Proof of Concept (PoC) for various AN use cases organized by the International Telecommunication Union Focus Group on Autonomous Networks (ITU FG-AN). The scope of this PoC includes the representation of closed-loop use cases in a graph format, the development of evolution/exploration mechanisms to create new closed loops based on the graph representations, and the implementation of a reference orchestrator to demonstrate the parsing and validation of the closed loops. The main conclusions and future directions are summarized here, including observations and limitations of the PoC

    GREEN BIOSYNTHESIS OF ZnO NANOPARTICLES USING AGRO-WASTE AND THEIR ANTIBACTERIAL AND ANTIOXIDANT ACTIVITY

    Get PDF
    Metal oxide nanomaterials have gained a lot of attention during last decades due to their potential applications in wastewater treatment, energy storage, sensors, food packaging, etc. To date, these materials have been synthesized by different chemical and physical techniques. However many of them employ environmentally unfriendly solvents and toxic chemical compounds. To tackle this problem, use of renewable biomass such as plants and fungi as reducing or stabilizing agents in green synthesis has been considered as more sustainable option compared to toxic chemical compounds. These biological substances also behave as capping agent, which control the size and the shape of the nanoparticles. In this work, ZnO nanoparticles (NPs) have been prepared via simple, low cost and ecofriendly method using citrus fruit peel and extracts, Agaricus bisporus powder and extract as biological reducing agents. Zinc nitrate and zinc acetate were used as source of zinc ions. Structural and optical properties were investigated by X-ray diffraction analysis (XRD), Zeta potential, Fourier Transform Infrared (FTIR) spectroscopy, UV-visible (UV-vis) spectroscopy and Photoluminescence spectroscopy (PL). Morphological features were characterized by Field Emission Scanning Electron microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). Antibacterial and antioxidant activity was tested and evaluated
    corecore