3 research outputs found

    Aggregating the Bandwidth of Multiple Network Interfaces to Increase the Performance of Networked Applications

    Get PDF
    Devices capable of connecting to two or more different networks simultaneously, known as host multihoming, are becoming increasingly common. For example, most laptops are equipped with a least a Local Area Network (LAN) and a Wireless LAN (WLAN) interface, and smartphones can connect to both WLANs and 3G-networks (High-Speed Downlink Packet Access, HSDPA). Being connected to multiple networks simultaneously allows for desirable features like bandwidth aggregation and redundancy. Enabling and making efficient use of multiple network interfaces or links (network interface and link will be used interchangeably throughout this thesis) requires solving several challenges related to deployment, link heterogeneity and dynamic behavior. Even though multihoming has existed for a long time, for example routers must support connecting to different networks, most existing operating systems, network protocols and applications do not take host multihoming into consideration. The default behavior is still to use a single interface for all traffic. Using a single interface is, for example, often insufficient to meet the requirements of popular, bandwidth intensive services like video streaming. In this thesis, we have focused on bandwidth aggregation on host multihomed devices. Even though bandwidth aggregation has been a research field for several years, the related works have failed to consider the challenges present in real world networks properly, or does not apply to scenarios where a device is connected to different heterogeneous networks. In order to solve the deployment challenges and enable the use of multiple links in away that works in a real-world network environment, we have created a platform-independent framework, called MULTI. MULTI was used as the foundation for designing transparent (to the applications) and application-specific bandwidth aggregation techniques. MULTI works in the presence of Network Address Translation (NAT), automatically detects and configures the device based on changes in link state, and notifies the application(s) of any changes. The application-specific bandwidth aggregation technique presented in this thesis was optimised for and evaluated with quailty-adaptive video streaming. The technique was evaluated with different types of streaming in both a controlled network environment and real-world networks. Adding a second link gave a significant increase in both video and playback quality. However, the technique is not limited to video streaming and can be used to improve the performance of several, common application types. In many cases, it is not possible to extend applications directly with multilink support. Working on the network-layer allows for the creation of bandwidth aggregation techniques that are transparent to applications. Transparent, network-layer bandwidth aggregation techniques must support the behavior of the different transport protocol in order to achieve efficient bandwidth aggregation. The transparent bandwidth aggregation techniques introduced in this thesis are targeted at Universal Datagram Protocol (UDP) and Transmission Control Protocol (TCP), the two most common transport protocols in the Internet today

    Concurrent multipath transmission to improve performance for multi-homed devices in heterogeneous networks

    Get PDF
    Recent network technology developments have led to the emergence of a variety of access network technologies - such as IEEE 802.11, wireless local area network (WLAN), IEEE 802.16, Worldwide Interoperability for Microwave Access (WIMAX) and Long Term Evolution (LTE) - which can be integrated to offer ubiquitous access in a heterogeneous network environment. User devices also come equipped with multiple network interfaces to connect to the different network technologies, making it possible to establish multiple network paths between end hosts. However, the current connectivity settings confine the user devices to using a single network path at a time, leading to low utilization of the resources in a heterogeneous network and poor performance for demanding applications, such as high definition video streaming. The simultaneous use of multiple network interfaces, also called bandwidth aggregation, can increase application throughput and reduce the packets' end-to-end delays. However, multiple independent paths often have heterogeneous characteristics in terms of offered bandwidth, latency and loss rate, making it challenging to achieve efficient bandwidth aggregation. For instance, striping the flow's packets over multiple network paths with different latencies can cause packet reordering, which can significantly degrade performance of the current transport protocols. This thesis proposes three new solutions to mitigate the effects of network path heterogeneity on the performance of various concurrent multipath transmission settings. First, a network layer solution is proposed to stripe packets of delay-sensitive and high-bandwidth applications for concurrent transmission across multiple network paths. The solution leverages the paths' latency heterogeneity to reduce packet reordering, leading to minimal reordering delay, which improves performance of delay-sensitive applications. Second, multipath video streaming is developed for H.264 scalable video, where the reference video packets are adaptively assigned to low loss network paths to reduce drifting errors, thus combatting H.264 video distortion effectively. Finally, a new segment scheduling framework - which carefully considers path heterogeneity - is incorporated into the IETF Multipath TCP to improve throughput performance. The proposed solutions have been validated using a series of simulation experiments. The results reveal that the proposed solutions can enable efficient bandwidth aggregation for concurrent multipath transmission over heterogeneous network paths

    Providing telecommunication to the tea plantations in Bangladesh

    Get PDF
    Analyzing all the existing telecommunication technologies in Bangladesh, discussing their merits and demerits, and choosing the most viable option in order to provide a network system to the tea planters for facilitating updating of necessary information of the tea estates to the head offices and vice versa
    corecore