6,297 research outputs found

    Robust measurement-based buffer overflow probability estimators for QoS provisioning and traffic anomaly prediction applications

    Get PDF
    Suitable estimators for a class of Large Deviation approximations of rare event probabilities based on sample realizations of random processes have been proposed in our earlier work. These estimators are expressed as non-linear multi-dimensional optimization problems of a special structure. In this paper, we develop an algorithm to solve these optimization problems very efficiently based on their characteristic structure. After discussing the nature of the objective function and constraint set and their peculiarities, we provide a formal proof that the developed algorithm is guaranteed to always converge. The existence of efficient and provably convergent algorithms for solving these problems is a prerequisite for using the proposed estimators in real time problems such as call admission control, adaptive modulation and coding with QoS constraints, and traffic anomaly detection in high data rate communication networks

    Robust measurement-based buffer overflow probability estimators for QoS provisioning and traffic anomaly prediction applicationm

    Get PDF
    Suitable estimators for a class of Large Deviation approximations of rare event probabilities based on sample realizations of random processes have been proposed in our earlier work. These estimators are expressed as non-linear multi-dimensional optimization problems of a special structure. In this paper, we develop an algorithm to solve these optimization problems very efficiently based on their characteristic structure. After discussing the nature of the objective function and constraint set and their peculiarities, we provide a formal proof that the developed algorithm is guaranteed to always converge. The existence of efficient and provably convergent algorithms for solving these problems is a prerequisite for using the proposed estimators in real time problems such as call admission control, adaptive modulation and coding with QoS constraints, and traffic anomaly detection in high data rate communication networks

    A Partially Reflecting Random Walk on Spheres Algorithm for Electrical Impedance Tomography

    Get PDF
    In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance of the new estimator both theoretically and experimentally. In a second step, the variance is considerably reduced via a novel control variate conditional sampling technique

    Recovering from External Disturbances in Online Manipulation through State-Dependent Revertive Recovery Policies

    Full text link
    Robots are increasingly entering uncertain and unstructured environments. Within these, robots are bound to face unexpected external disturbances like accidental human or tool collisions. Robots must develop the capacity to respond to unexpected events. That is not only identifying the sudden anomaly, but also deciding how to handle it. In this work, we contribute a recovery policy that allows a robot to recovery from various anomalous scenarios across different tasks and conditions in a consistent and robust fashion. The system organizes tasks as a sequence of nodes composed of internal modules such as motion generation and introspection. When an introspection module flags an anomaly, the recovery strategy is triggered and reverts the task execution by selecting a target node as a function of a state dependency chart. The new skill allows the robot to overcome the effects of the external disturbance and conclude the task. Our system recovers from accidental human and tool collisions in a number of tasks. Of particular importance is the fact that we test the robustness of the recovery system by triggering anomalies at each node in the task graph showing robust recovery everywhere in the task. We also trigger multiple and repeated anomalies at each of the nodes of the task showing that the recovery system can consistently recover anywhere in the presence of strong and pervasive anomalous conditions. Robust recovery systems will be key enablers for long-term autonomy in robot systems. Supplemental info including code, data, graphs, and result analysis can be found at [1].Comment: 8 pages, 8 figures, 1 tabl

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    • …
    corecore