17,609 research outputs found

    Finding Optimal Strategies in a Multi-Period Multi-Leader-Follower Stackelberg Game Using an Evolutionary Algorithm

    Full text link
    Stackelberg games are a classic example of bilevel optimization problems, which are often encountered in game theory and economics. These are complex problems with a hierarchical structure, where one optimization task is nested within the other. Despite a number of studies on handling bilevel optimization problems, these problems still remain a challenging territory, and existing methodologies are able to handle only simple problems with few variables under assumptions of continuity and differentiability. In this paper, we consider a special case of a multi-period multi-leader-follower Stackelberg competition model with non-linear cost and demand functions and discrete production variables. The model has potential applications, for instance in aircraft manufacturing industry, which is an oligopoly where a few giant firms enjoy a tremendous commitment power over the other smaller players. We solve cases with different number of leaders and followers, and show how the entrance or exit of a player affects the profits of the other players. In the presence of various model complexities, we use a computationally intensive nested evolutionary strategy to find an optimal solution for the model. The strategy is evaluated on a test-suite of bilevel problems, and it has been shown that the method is successful in handling difficult bilevel problems.Comment: To be published in Computers and Operations Researc

    Overview and classification of coordination contracts within forward and reverse supply chains

    Get PDF
    Among coordination mechanisms, contracts are valuable tools used in both theory and practice to coordinate various supply chains. The focus of this paper is to present an overview of contracts and a classification of coordination contracts and contracting literature in the form of classification schemes. The two criteria used for contract classification, as resulted from contracting literature, are transfer payment contractual incentives and inventory risk sharing. The overview classification of the existing literature has as criteria the level of detail used in designing the coordination models with applicability on the forward and reverse supply chains.Coordination contracts; forward supply chain; reverse supply chain

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    A method to solve two-player zero-sum matrix games in chaotic environment

    Get PDF
    This research article proposes a method for solving the two-player zero-sum matrix games in chaotic environment. In a fast growing world, the real life situations are characterized by their chaotic behaviors and chaotic processes. The chaos variables are defined to study such type of problems. Classical mathematics deals with the numbers as static and less value-added, while the chaos mathematics deals with it as dynamic evolutionary, and comparatively more value-added. In this research article, the payoff is characterized by chaos numbers. While the chaos payoff matrix converted into the corresponding static payoff matrix. An approach for determining the chaotic optimal strategy is developed. In the last, one solved example is provided to explain the utility, effectiveness and applicability of the approach for the problem.Abbreviations: DM= Decision Maker; MCDM = Multiple Criteria Decision Making; LPP = Linear Programming Problem; GAMS= General Algebraic Modeling System
    corecore