8,241 research outputs found

    Scaling reinforcement learning to the unconstrained multi-agent domain

    Get PDF
    Reinforcement learning is a machine learning technique designed to mimic the way animals learn by receiving rewards and punishment. It is designed to train intelligent agents when very little is known about the agent’s environment, and consequently the agent’s designer is unable to hand-craft an appropriate policy. Using reinforcement learning, the agent’s designer can merely give reward to the agent when it does something right, and the algorithm will craft an appropriate policy automatically. In many situations it is desirable to use this technique to train systems of agents (for example, to train robots to play RoboCup soccer in a coordinated fashion). Unfortunately, several significant computational issues occur when using this technique to train systems of agents. This dissertation introduces a suite of techniques that overcome many of these difficulties in various common situations. First, we show how multi-agent reinforcement learning can be made more tractable by forming coalitions out of the agents, and training each coalition separately. Coalitions are formed by using information-theoretic techniques, and we find that by using a coalition-based approach, the computational complexity of reinforcement-learning can be made linear in the total system agent count. Next we look at ways to integrate domain knowledge into the reinforcement learning process, and how this can signifi-cantly improve the policy quality in multi-agent situations. Specifically, we find that integrating domain knowledge into a reinforcement learning process can overcome training data deficiencies and allow the learner to converge to acceptable solutions when lack of training data would have prevented such convergence without domain knowledge. We then show how to train policies over continuous action spaces, which can reduce problem complexity for domains that require continuous action spaces (analog controllers) by eliminating the need to finely discretize the action space. Finally, we look at ways to perform reinforcement learning on modern GPUs and show how by doing this we can tackle significantly larger problems. We find that by offloading some of the RL computation to the GPU, we can achieve almost a 4.5 speedup factor in the total training process

    Generating Interpretable Fuzzy Controllers using Particle Swarm Optimization and Genetic Programming

    Full text link
    Autonomously training interpretable control strategies, called policies, using pre-existing plant trajectory data is of great interest in industrial applications. Fuzzy controllers have been used in industry for decades as interpretable and efficient system controllers. In this study, we introduce a fuzzy genetic programming (GP) approach called fuzzy GP reinforcement learning (FGPRL) that can select the relevant state features, determine the size of the required fuzzy rule set, and automatically adjust all the controller parameters simultaneously. Each GP individual's fitness is computed using model-based batch reinforcement learning (RL), which first trains a model using available system samples and subsequently performs Monte Carlo rollouts to predict each policy candidate's performance. We compare FGPRL to an extended version of a related method called fuzzy particle swarm reinforcement learning (FPSRL), which uses swarm intelligence to tune the fuzzy policy parameters. Experiments using an industrial benchmark show that FGPRL is able to autonomously learn interpretable fuzzy policies with high control performance.Comment: Accepted at Genetic and Evolutionary Computation Conference 2018 (GECCO '18

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore